

Our company

Abstract

TRM develops, manufactures and markets high-quality systems for the transport of water and for deep foundation of structures made of ductile cast iron.

We see ourselves as a Tyrolean manufacturer with a long-standing tradition specializing in pipe and pile systems made of ductile cast iron for the water industry and for deep foundation engineering. We operate worldwide and have our core market in Europe. Since 1947, we have focused our activities on quality, safety, mutual trust and respect. We see ourselves as a reliable and competent partner in a wide range of applications within our industry; a view that is shared by our partners.

Our products are high-performance, sustainable and robust. They stand out particularly due to their ecological and economical benefits. The features of ductile cast iron and our expertise in all fields of applications enable us to overcome even extreme challenges.

The sustainable properties of ductile cast iron combined with innovative technologies and professional expertise in all fields of application make us a leading partner in the water industry and deep foundation.

Due to our high competence, willingness and reliability, we are a powerful and long-term system partner.

TIROLER ROHRE GMBH

Innsbrucker Strasse 51
6060 Hall in Tirol
Austria

T +43 (0) 52235030
F +43 (0) 5223503111
E office@trm.at
www.trm.at

Products:

Pipes according to EN 545 and EN 598 of nominal sizes from DN 80 to DN 1.000 and piles

General list of contents

1 Advantages of ductile iron pipe systems 7 Foreword. 3
2 The positive locking system 15 General list of contents 5
3 The non-positive locking system 251 Advantages of ductile iron pipe systems 7
4 Flanged joints, pipes and fittings 35
2 The positive locking system 15 15
Introduction 16
5 Coatings 43 17
VRS ${ }^{\circledR}$-T joint DN 80 to DN 500 17VRS ${ }^{\circledR}$-T joint with clamping ring DN 80 to DN 500
49
6 Accessories
7 Special products 53
8 Planning, transport and installation 59
VRS ${ }^{\circledR}$ - T pipe DN 80 to DN 50017
BLS® joint DN 600 to DN 1000 18
BLS ${ }^{\circledR}$ pipe DN 600 to DN 1000. 19
2.2 Fittings with positive locking joints. 19
MMK 11 fittings - $11 \frac{114^{\circ}}{}$ double socket bends 20
MMK 22 fittings - $221 / 2^{\circ}$ double socket bends 20
MMK 30 fittings -30° double socket bends 20
MMK 45 fittings -45° double socket bends 20
MMO fittings - 90° double socket bends 21
MK 11 and MK 22 fittings - 1114° and $22^{1} 2^{\circ}$ single socket bends 21
MK 30 and MK 45 fittings - 30° and 45° single socket bends 21
MMB fittings - All-socket tees with 90° branch 21
MMQ fittings - Double socket tapers 22
U fittings - Collars 22
F fittings - Flanged spigots 22
EU fittings - Flanged sockets 22
MMA fittings - Double socket tees with flanged branch 23
O fittings - Spigot end caps 23
P plugs - Socket plugs 23
GL fittings (GDR fittings) - Plain ended pipe pieces with two welded beads. 23
HAS fittings (A fittings) - House service connection fittings with outlet with $2^{\prime \prime}$ female thread 24
ENH fittings - 90° duckfoot bends for hydrants with male threaded outlet 24
EN fittings - 90° duckfoot bends 24
Marking of fittings 24
3 The non-positive locking system 25
3.1 Overview 26
3.2 TYTON ${ }^{\circledR}$ pipes - 6 m laying length DN 80 to DN 1000 27
3.3 TYTON ${ }^{\circledR}$ pipes - 5 m laying length DN 80 to DN 500. 27
3.4 Fittings with non-positive locking joints. 28
MMK 11 fittings $-11 \frac{1}{4^{\circ}}$ double socket bends 29
MMK 22 fittings - 2211/2 ${ }^{\circ}$ double socket bends 29
MMK-Stücke 30. 29
MMK 45 fittings -45° double socket bends 29
MMO fittings - 90° double socket bends 30
MK 11 fittings - $11 \frac{1}{4} 4^{\circ}$ single socket bends 30
MK 22 fittings - $22^{1 ⁄ 2} 2^{\circ}$ single socket bends 30
MK 30 fittings -30° single socket bends. 30
MK 45 fittings -45° single socket bends 31
MO fittings - 90° single socket bends 31
U fittings - Collars 31
MMB fittings - All-socket tees with 90° branch. 31
MMC fittings - All-socket tees with 45° branch 32
MMR fittings - Double socket tapers 32
O fittings - Spigot end caps 32
P fittings - Socket plugs 33
Screw rings for P socket plugs 33
PX fittings - Screw plugs for screwed socket joints 33
EU fittings - Flanged sockets 33
EN fittings - 90 duckfoot bends 33
MMA fittings - Double socket tees with flanged branch 34
Weld-on connections for ductile iron pipes 34
Marking of fittings 34
4 Flanged joints, pipes and fittings 35
Introduction 36
4.1 Flanged joints 36
PN 10 flanged joints 36
PN 16 flanged joints 36
PN 25 flanged joints 37
PN 40 flanged joints 37
4.2 Flanged pipes 37
With integral flanges 37
With screwed flanges 37
With puddle flange 38
4.3 Flanged fittings 38
FFK 11 fittings $-11^{1} 4^{\circ}$ double flanged bends 38
FFK 22 fittings - $22^{1} 1^{\circ}$ double flanged bends 38
FFK 30 fittings -30° double flanged bends 38
FFK 45 fittings -45° double flanged bends. 39
Q fittings - 90° double flanged bends 39
F fittings - Flanged spigots 39
T fittings - All flanged tees 40
TT fittings - All flanged crosses 40
FFR fittings - Double flanged tapers 41
FFRe fittings - Eccentric double flanged tapers. 41
N fittings - Double flanged 90° duckfoot bends. 41
X fittings - Blank flanges 42
DN 80 transition flanges - Flanges for PN 10 to PN 40 transitions 42
Marking of fittings. 42
5 Coatings 43
Preliminary remarks 44
5.1 External coatings Zinc coating with polyurethane finishing layer 44
5.2 The PUR-TOP special finishing layer 45
5.3 External coatings Zinc coating with epoxy coating 45
5.4 External coatings Zinc-aluminium coating with finishing layer (Zinc Plus) 46
5.5 External coatings Cement mortar coating 47
6 Accessories. 49
Laying tools and other accessories for pipes and fittings with TYTON ${ }^{\oplus}$, BRS ${ }^{\circledR}$ or VRS $^{\circledR}$-T push-in joints. 50
Rubber sleeves for protecting cement mortar, for pipes with a cement mortar coating (ZMU) 51
One-piece shrink-on sleeves for DN 80 to DN 500 pipes 51
Shrink-on sleeves of tape material for
DN 600 to DN 1000 pipes 51
7 Special products. 53
7.1 WKG pipes with TYTON® push-in joints. 54
WKG pipes with VRS®-T push-in joints 54
WKG socket bends (MMK) with TYTON ${ }^{\text {® }}$ push-in joints 54
WKG socket bends (MMK) with VRS®-T push-in joints 54
7.2 Installation instructions for ductile iron pipes with WKG thermal insulation. 56
7.3 Coating of fittings (internal and external). 57
7.4 External coatings Thermally insulated ductile iron pipes and fittings (WKG) 58
8 Planning, transport and installation 59
8.1 Transport and storage 60
8.2 Pipeline trenches and bedding 61
8.3 Calculating vertical offsets when using flanged fittings 62
8.4 Dimensioning of concrete thrust blocks. 63
8.5 Lengths of pipeline to be restrained 64
8.6 Installation instructions for pipes with a ZMU 68
8.7 Installation instructions VRS ${ }^{\oplus}$-T joints DN 80 to DN 500 71
8.8 Installation instructions BLS ${ }^{\circledR}$ joints DN 600 - DN 1000 74
8.9 Installation instructions TYTON® push-in joints. 76
8.10 Installation instructions for flanged joints. 78
8.11 Installation instructions BRS ${ }^{\circledR}$ push-in joints 79
8.12 Installation instructions Bolted gland joints 80
8.13 Cutting of pipes. 82
8.14 Technical recommendations for manual metal arc welding 83
8.15 Pressure testing 84
8.16 Disinfection of drinking water pipelines 87
8.17 Hydraulic calculation of drinking water pipelines 89
Pressure loss table for DN 80. 90
Pressure loss table for DN 100 90
Pressure loss table for DN 125 91
Pressure loss table for DN 150 92
Pressure loss table for DN 200 93
Pressure loss table for DN 250 93
Pressure loss table for DN 300 94
Pressure loss table for DN 400 94
Pressure loss table for DN 500 95
Pressure loss table for DN 600 95
Pressure loss table for DN 700 96
Pressure loss table for DN 800 96
Pressure loss table for DN 900 97
Pressure loss table for DN 1000 97

$$
\begin{aligned}
& 1 \text { - ADVANTAGES OF DUCTILE } \\
& \text { IRON PIPE SYSTEMS }
\end{aligned}
$$

The production process

Only materials of the very best quality are used as raw materials for our company's ductile cast iron pipes. What is used to obtain the pig iron is exclusively recycled material (iron and steel scrap). Not only the use of recycled material in production, but also their very long technical operating life of up to 140 years and the almost 100\% recyclability which follows make ductile cast iron pipes particularly sustainable. From production and use right through to re-use at the end of their long life, ductile cast iron pipes are remarkably economical and environment-friendly.

The scrap used is smelted with coke and other additives in a cupola furnace and is then fed off for treatment with magnesium. The pig iron and the treated iron are of course checked for their chemical composition and mechanical properties at short regular intervals.

What is now, after the treatment with magnesium, ductile cast iron is distributed to the various centrifugal casting machines. In these, the "pipe blanks" are cast by the de Lavaud process. Sand cores whose external configurations differ to suit the type of joint are inserted in the centrifugal casting mould (permanent mould) to create the internal contours of the socket. This is followed by annealing at $960^{\circ} \mathrm{C}$ which, in the end, gives the pipes their ductile properties.

The annealing furnace is followed by the fettling and testing line. It is here that the pipes get their zinc or zinc-aluminium coating, that their dimensions are checked and that they are tested for leaks at up to 50 bars. Samples of the material are taken at regular intervals and are checked to ensure that the prescribed parameters are being maintained.

The process continues with a welded bead being applied to the pipes which have $V R S^{\circledR}-T$ joints before all the pipes are given a lining of cement mortar. This is done by method I under
DIN 2880 and ÖNORM B2562.

All that is now missing is the external coating. There are a number of options available in this case. The standard one is a finishing layer of polyurethane. However, what can be applied to the zinc-coated pipe as an alternative is epoxy finishing layer or a cement mortar coating. Pipes having a cement mortar coating, which is referred to in short by its German initials ZMU, can subsequently be used in soils with grain sizes of up to 100 mm or in soils of any desired corrosiveness, or can be installed using the trenchless method. What is more, the ZMU means that the expected technical operating life is lengthened to up to 140 years.

In the final part of the production process, the markings are applied, caps are fitted to drinking water pipes, the pipes are bundled, and a final quality control is carried out. This high quality in products and our services produces satisfaction for our customers. This is the supreme corporate aim of TRM Tiroler Rohre GmbH . We operate a quality management system which is certified under EN ISO 9001. At our production site in Hall, all our products and production processes are regularly monitored by by Municipal Department 39 (MA 39) - Research Centre, Laboratory and Certification Services - of the city of Vienna.

As well as this, TRM also operates an environmental management system which is certified under EN ISO 14001 and an energy management system which is certified under EN ISO 16001 . The quality management system is a wide-ranging one and begins with a chemical analysis of the raw materials and additives. This is because, when the molten iron is being smelted and treated, there are stringent requirements which have to be met with regard to the purity and consistency of the raw materials, the monitoring of the smelting process, the maintaining of the chemical composition, and the injection technique.

In the actual production of the pipes, allowance has to be made for the particular way in which ductile cast iron behaves as it solidifies and shrinks. When the annealed pipes are being checked, the characteristics of the material, which are laid down in EN 545 (for drinking water pipes) and EN 598 (for sewerage pipes), have to be monitored. The sockets and spigot ends of all the pipes are checked with limit gauges and their wall thickness is measured. All the pipes undergo a thorough visual inspection for internal and external flaws. The internal pressure test is carried out with water and in it the pipes have to withstand the test pressures which are laid down for the given type of pipe.

The cement mortar lining

The cement mortar lining of the pipes is also subject to stringent quality controls - as well as the raw materials and the fresh mortar being checked, the layer thickness also has to be as prescribed for the given nominal size.

The external coating

The external coating has to pass an equally stringent check. As standard, TRM ductile cast iron pipes are given an external coating consisting of a zinc coating and a polyurethane finishing layer. Where pipes are to be used in highly corrosive or stony soils or for trenchless installation techniques, a high quality 5 mm thick coating of plastic-modified cement mortar is also available. This coating is very strong mechanically and highly resistant to chemicals. After marking, the pipes then undergo a final inspection. In the end-face of the socket there are parallel notch-like depressions some three millimetres deep which are an additional indication that the material is "ductile cast iron".

All products of TRM Tiroler Rohre GmbH for the supply of drinking water are of course certified by the DVGW (German Technical and Scientific Association for Gas and Water) and the OVGW (Austrian Association for Gas and Water). The basis for this certification is the DVGW's standards VP 545/ GW 337. All the materials used by us in manufacture which will subsequently come into contact with drinking water when pipes are in use, such as the lubricants, gaskets and cement mortar, have been tested to the appropriate DVGW standards. The possibility of the quality of drinking water being adversely affected by our products can therefore be ruled out.

All of our production and our in-house production controls and our products are subject to regular external monitoring. In nominal sizes from DN 80 to DN 500, our ductile iron pipes with V RS ${ }^{\circledR}$-T push-in joints also have FM approval. This allows them to be used for fire-fighting and fire extinguishing systems.

Our fittings are coated internally and externally with an epoxy finishing layer to EN 14 901. This coating also meets the stringent requirements laid down by the Gütegemeinschaft Schwerer Korrosionsschutz (GSK) (Quality Association for Heavy Duty Corrosion Protection). This means that our fittings to EN 545 can be installed in soils of any desired corrosiveness.

A selection of the most important certificates is available for downloading at www.trm.at or can be distributed by our sales team under office@trm.at.

Standard specifying texts for use in invitations to tender English standard texts conforming to the current EN 545 for specifying our high quality pipes and fittings in invitations to tender are available at www.trm.at in a variety of formats (Word, pdf) or can be distributed by our sales team under office@trm.at

The material

What can be shown to be the first cast iron pipes were already being used in 1455 to supply water to the castle of Dillenburg and they remained in operation for more than 300 years. Over the following centuries the development of cast iron as a material continued in order to meet the increasing demands that were being made on it. Since the 1960's, pipes have no longer been composed of the grey cast iron that had been the usual material up until then but of ductile cast iron, normally referred to simply as ductile iron. The word "ductile" comes from the Latin verb ducere = to lead or reshape and means to be able to be stretched or shaped into a new form. This indicates one of the significant properties of ductile iron, its ability to deform under load and hence to withstand very high loads originating from traffic and internal pressure for example.

Ductile iron is a tough iron-carbon material in which the volume of carbon exists predominantly in a free form as graphite. It differs from grey iron principally in the shape of the graphite particles. Treatment of the molten iron with magnesium causes the carbon to crystallise in a largely spheroidal form as solidification takes place. This results in a considerable increase in strength and deformability compared with grey iron. The so-called spheroids of graphite have only a minor effect on the properties of the microstructure of the metal. In the grey iron which was the standard material in the past, the graphite took the form of flakes or lamellae which had a notch effect and thus reduced the relatively high strength of the microstructure. Whereas in cast iron with lamellar graphite the stress lines become highly concentrated at the tips of the graphite lamellae, in ductile iron they flow round the graphite which has separated out in spheroidal form almost undisrupted. This is why ductile iron is able to deform under load. From the point of view of stress analysis, ductile iron pipes and fittings are considered to be flexible tubes.

Under EN 545, tensile strength and elongation after rupture can be tested on test bars.

The table below provides an overview of the characteristics of ductile iron:

Characteristics	Units	Value
Tensile strength	$\mathrm{N} / \mathrm{mm}^{2}$	420
0,2\% proof of stress	$\mathrm{N} / \mathrm{mm}^{2}$	300
Elongation after rupture	$\%$	≥ 10
Compressive strength	$\mathrm{N} / \mathrm{mm}^{2}$	900
E-Modulus	$\mathrm{N} / \mathrm{mm}^{2}$	170.000
Bursting strength	$\mathrm{N} / \mathrm{mm}^{2}$	300
Compressive strength at crown	$\mathrm{N} / \mathrm{mm}^{2}$	550
Longitudinal bending stiffness	$\mathrm{N} / \mathrm{mm}^{2}$	420
Oscillation banwidth	$\mathrm{N} / \mathrm{mm}^{2}$	135
Mean coefficient of thermal expansion	$\mathrm{m} / \mathrm{mK}^{2}$	$10 \times 10-6$
Thermal conductivity	$\mathrm{W} / \mathrm{cmK}^{2}$	0,42
Specific heat	J / gK	0,55

The mechanical properties of a metallic material like ductile iron remain the same throughout the whole of its operating life. That is why ductile iron pipes are still able to accept loads and are still safe even after decades.

Made in Austria

Our ductile iron pipes are produced solely in Hall in Tirol. This ensures consistently high quality and short distances for deliveries. At the same time, it also safeguards jobs in Austria.

A tradition to live up to

Cast iron pipes have been produced since 1901. Initially the pipes were produced by the sand casting process but since 1925 this has been done by the de Lavaud centrifugal casting process. Over the years and decades, the production processes, the types of internal and external protection for the pipes, and the joint systems have been developed and refined to an ever higher standard. Today we

The way of stress lines in cast iron with lamellar graphit (on the left) and spheriodal graphit (on the right).
can look back on our more than 100 years of experience and can invest the knowledge it has given us in the ongoing development of our products and can thus pass on its benefits to our customers.

Service

Our company has its primary sites in the heart of Europe and this not only enables us to keep the distances for transport short but also means that throughout the sales area our applications engineers and field sales staff can be at your service promptly to provide advice and assistance. We have an experienced team of technicians, engineers and salesmen ready to support you with help and advice.

Hygiene

One of the primary tasks of our civilisation is always to get water reliably to its destination. For generations now, our ductile iron pipes have set the standard for quality in water supply. Water is the most important nutrient on our planet and for this reason it has to be protected against contamination and the effects of chemicals while it is being transported through pipelines. Our ductile iron pipes are provided as standard with a cement mortar lining. Pipelines almost 100 years old which were lined with cement mortar have shown that
for long life and effectiveness cement mortar serving as a minera lining is superior to all the other materials that have been used to date.

The cement mortar lining has both, an active and a passive protective action. Its active protective action is based on an electrochemical process. Water penetrates into the pores in the cement mortar, dissolves free lime, and rises to a pH of more than 12. At a pH of this level it is impossible for cast iron to corrode. The passive action results from the physical separation which exists between the pipe's cast iron wall and the water. The cement mortar lining consists of a mixture of sand, cement and water which is introduced into the pipe as the latter is rotating and which is then flung against the internal surface of the pipe by centrifugal force. The centrifuging process acts powerfully to drive out the water mechanically and compact the cement mortar tightly (water/cement ratio > 0.35:1). What this gives is firstly high strength for the cured cement and secondly extremely high resistance to any possible corrosive attack by water as a medium. For drinking water supply, the cement used is principally blast furnace cement or Portland cement.

Imperviousness to diffusion

Ductile iron drinking water pipes are sealed! And they are sealed in more than one way. Being an inorganic material, the cast iron of the pipe wall is sealed against (impervious to) diffusion. This means that nothing can penetrate through the pipe wall either from the inside outwards or vice versa. For drinking water, this means that no pollutants can find their way into the drinking water - an important matter especially when pipes are being laid in contaminated soils.

One pipe - many options

Our ductile iron pipes are versatile in the ways in which they can be used. There are two sophisticated and reliable restraint systems available in the form of our $V \mathrm{RS}^{\circledR}-\mathrm{T}$ and BRS^{\circledR} push-in joint systems Whereas pipes with BRS ${ }^{\circledR}$ joints are used mainly in urban water supply and serve as a replacement for concrete thrust blocks in this application due to the restrained nature of the joints, there are almost no limits to what can be done with the $\mathrm{VRS}^{\circledR}-\mathrm{T}$ system.

Typical fields of application of the VRS®-T system are:

- replacement of concrete thrust blocks in conventional laying techniques
- bridge pipelines/above-ground pipelines
- temporary pipelines (for temporary water supplies)
- trenchless installation techniques (HDD, burst lining and press-pull techniques, pipe relining, floating-in, etc.)
- snow-making systems
- turbine pipelines
- laying on steep slopes
- fire-fighting and fire-extinguishing pipelines (FM Approval approval)
- use in regions at risk of earthquakes or settlement
- crossings below bodies of water/culvert pipelines
- building services
- urban water supply

A complete system

Also available to supplement our pipes is an extensive range of fittings for use both with $T_{Y T O N}{ }^{\circledR}, \mathrm{BRS}^{\circledR}$ and $\mathrm{VRS}^{\circledR}-\mathrm{T}$ joints. Almost all the fittings available are listed in this Manual and others are available on enquiry. All our fittings are produced specifically for us by wellknown German foundries.

Handling the ups and downs - pipeline stability

Because of their long laying length of 5 m to 6 m , ductile iron pipes are insensitive to changes in position caused by settlement or by inconsistencies in the supporting layer produced. Because of their high longitudinal bending stiffness, pipes are able to bridge faults in the supporting layer without being overloaded and suffering damage as a result
What is more, depending on the nominal size and the type of joint, our push-in joints can be deflected angularly by up to a maximum of 5°. For a 6 m long pipe for example, this is equal to a deflection of about 50 cm from the axis of the socket of the pipe or fitting laid previously
This means that even large areas of settlement cannot impair the leaktightness of the system and prevents unwanted restraints from being passed on from one pipe to the next.
In the event of settlement and hence changes in the length of the pipe string, the $\mathrm{VRS}^{\circledR}-\mathrm{T}$ joint also safeguards pipes and fittings against longitudinal forces and stops them from being pulled apart.

Not to be underestimated - structural safety/ laying on cradles carried on piles

Ductile iron pipes are equal to almost any load. For example, given the right nominal size, wall thickness and conditions of installation, our pipes can be laid with a height of cover of only 30 cm to withstand a traffic load conforming to the SLW 60 load model (heavy goods vehicle applying a total load of 600 kN).
This is achieved by means of the high diametral stiffness and longitudinal bending stiffness. Where elevated stress levels exist due to traffic, top cover, internal pressure, etc., it is possible for the wall thickness to be varied

From the point of view of stress analysis, ductile iron pipes can be considered a system which is flexible in bending. Evidence of suitability for use can be obtained from the allowable deformation or stresses and from the checks made on fatigue strength. A service we offer for this purpose is the drawing up of checkable pipe stress analyses by our Applications Engineering Division.

Nor are there usually any stress-related problems with laying pipelines on cradles carried on piles. Because of the high loadbearing capacity of the pipes, only one cradle per pipe is needed in many cases.

Safety margins

When it is a question of supplying our most precious commodity, drinking water, safety should be a primary concern. Without exception, all pipes are therefore tested for leak tightness in the factory. Against internal pressure, ductile cast iron pipes have a safety factor of 3 .

Coatings

Under EN 545, ductile iron pipes are provided with a metallic zinc or zinc-aluminium coating and a finishing layer. The mass of the zinc coating is $200 \mathrm{~g} / \mathrm{m}^{2}$ and that of the zinc-aluminium coating is $400 \mathrm{~g} / \mathrm{m}^{2}$. The finishing layer consists for example of blue paint of polyurethane, epoxy or of bitumen. The material used for the bedding may not exceed the following grain sizes:

- rounded material 0/32 mm
 - fragmented material $0 / 16 \mathrm{~mm}$

According to ÖNORM B2538 the designer has the possibility to increase the maximum grain size up to 100 mm for ductile cast iron pipes coated with PUR (polyurethane finishing) or PUR-TOP (polyurethane finishing plus PE-tape). Essential condition therefore is no compression of the backfill area and settlements which maybe occur on top are acceptable (f.e. forest soils, agricultural areas,...).

Under DIN 30675 Part 2, pipes with such a coating can be installed in soils of classes I (not aggressive to of low aggressiveness) and II (aggressive). If a pipe of this kind is bedded in an anode backfill, i.e. sand or gravel, it can even be laid in soils of class III (highly aggressive).

If the pipe is to be laid directly in highly aggressive or stony soils up to a maximum grain size of 100 mm , we recommend a zinc coating plus a cement mortar coating (ZMU) to EN 15 542. A ductile cast iron pipe with ZMU can be installed in almost any native soil without the soil having to be replaced.

This means a considerable cost saving such as on dumping charges, purchase of replacement soil and transporting of bulk materials.
If the native soil can be re-used as backfill, there is the added benefit that this avoids the often undesirable draining effect that a pipe trench filled with gravel has.
Pipes with a ZMU can also be used for trenchless installation techniques such for example as the burst lining, horizontal directional drilling, push-pull and rocket plough techniques. Extracareful attention has to be paid to the socket joint in this case. The VRS ${ }^{\circledR}$-T joint is what we offer for this application.

Sustainability

Ductile cast iron pipes are long lived! Technical notice W401 issued by the Deutscher Verein des Gas- und Wasserfaches (German Technical and Scientific Association for Gas and Water) assesses their technical operating life at 100 to 140 years.

Cast iron pipes have been laid for more than 550 years for the purpose of transporting liquid media.
Even back in those early days the potential the material had was recogni- sed. It has been by the constant ongoing development of the production processes, the material itself and the joining techniques that such high standards of performance have been achieved.

Technical operating life by pipeline groups (from W 401)

Grey iron													
Ductile iron													
Ductile iron with ZMU													
Steel													
Polyethylene													
Cleaning and lining													
Age [years]	20	40	50	60	70	80	90	100	110	120	130	140	150

This long life takes the strain off future rehabilitation budgets and the very low damage rates also help to make a saving on operating and maintenance costs. The very long technical operating life that cast iron pipe systems enjoy has been shown by the experience of the past six centuries. An impressive piece of proof this kind is provided by the drinking water pipeline of 1455 supplying the castle at Dillenburg.
This pipeline was in operation until it was destroyed in July 1760. These and innumerable other examples provide impressive confirmation of the legendary long life of cast iron pipes.

Economy

To assess the economy of pipeline systems, there is more than just the price of the pipe material that has to be taken into account. What also have to be considered are the cost of installation, the damage rate and the technical operating life.

Ductile iron pipes are well known for the quick and easy way in which they can be laid and for how forgiving they are of mistakes in the laying. Our TYTON ${ }^{\circledR}$, BRS ${ }^{\circledR}$ and $V R S^{\oplus}-$ - joint systems can be assembled in a very short time without the need for any special tools.

The damage statistics compiled by the DVGW (German Technical and Scientific Association for Gas and Water) show our ductile iron pipes to have one of the lowest damage rates (damaged points per km per year) of all materials. Coupled with a technical operating life of up to 140 years, this gives ductile iron pipe systems extremely good economic viability and thus lays the foundation for a sustainably economical drinking water supply system for future generations.

The following formula is one possible way of determining the approximate average annual cost of a pipeline in Euros per metre.

$\varnothing C=1 \times(1 / n+p / 200)$

$\varnothing C=$ average annual cost of the pipeline in Euros/m
। = capital investment cost (cost of production) in Euros/m
$n \quad=$ technical operating life in years
$\mathrm{p}=$ interest rate in \%

From this formula it is very easy to see that the average annual cost of a pipeline depends principally on its technical operating life. Consequently, the high cost of production caused by the use of high grade materials for the pipeline works out to be perfectly economical over its lifetime. And this is true even without allowing for the advantages which ductile iron pipes have in terms of operating costs and costs arising from the frequency of damage.

Environmentally friendly

TRM ductile cast iron pipes are a model of friendliness to the environment. There are four factors which are the main reason for this:

1. We use only iron and steel scrap - i.e. recycled material - to obtain the molten pig iron. This not only saves valuable iron ore resources but also saves energy.
2. Because ductile iron pipes consist essentially of iron and cement mortar, they are almost 100% recyclable.
3. The main waste products generated in our production, such as slag and sand, are used in cement works and in road-building and hence are recovered for re-use.
4. Ductile iron pipe systems have an extremely long technica operating life of up to 140 years. Calculated over their life span, this reduces to a minimum the CO_{2} and other emissions released in producing them

Quality

Quality in the products it produces and satisfaction for its customers are the supreme corporate aims of TRM.
We operate a quality management system which is certified under EN ISO 9001 and an environmental management system which is certified under EN ISO 14 OO1. The products and production processes are regularly monitored by external materials testing institutions.

To ensure that we will continue to live up to our high aspirations in terms of quality in future, we produce our pipes only in our factory in Hall in Tirol in Austria. This ensures consistently high quality for our products and creates and safeguards jobs.

Advantages of ductile iron pipe systems

Ductile iron pipe systems are technically unbeatable

- Internal and external coatings make them resistant to corrosion
- Safe external protection for all soils and installation techniques
- Linings resistant to corrosive media
- High static load-bearing capacity
- Resistant to fracture
- High safety margins (to cater for fluctuations in pressure and static overloads and to counter the effects of external factors)
- Patented restrained joints
- Able to be deflected angularly up to a maximum of 5°
- Suitable for trenchless installation techniques
- Leaktight against high internal pressures, negative pressures and high water tables
- Pipe material is impervious to diffusion
- Resistant to the penetration of roots
- Properties of material remain constant (for long-term strength)

Ductile iron pipe systems are economically superior

- Quick and easy installation saves on costs
- Slim pipe walls mean narrow trenches
- Excavated material can generally be re-used
- No welding needed (very simple push-in joints)
- Laying is possible in all weathers
- Ideal for trenchless laying
- Material is not affected by ageing
- Long technical operating life
- Fittings and accessories give a complete system
- Efficient and inexpensive planning with the help of the TRM Applications Engineering Division
- Very low damage rate

Ductile iron pipe systems - consciously kind to the environment

- Material is inorganic
- Produced from recycled iron which is itself fully recyclable
- Meets the most stringent requirements for hygiene
- The sand used for the cement mortar lining is free of binders and chemical additives
- Pipe wall is totally impervious to diffusion
- Life of up to 140 years

2 - THE POSITIVE LOCKING SYSTEM

Introduction

This chapter deals only with restrained push-in joints where the restraint is based on a positive locking interengagement. Positive locking push-in joints can always be recognised by a welded bead on the spigot end and a retaining chamber. The positive locking interengagement between the welded bead and the retaining chamber is obtained by inserting locking segments. This enables forces to be transmitted mechanically between the spigot end and the socket of the next pipe or fitting.

An example of a positive locking joint (VRS®-T joint)

Forces may be generated by internal pressure or external tractive forces. Allowable operating pressures (PFA) and allowable tractive forces are specified on the pages 71 ff as a function of nominal size. Higher pressures and tractive forces are possible; please check with our Applications Engineering Division.

TRM supplies the following positive locking push-in joints for pipes and fittings:

The VRS ${ }^{\circledR}$-T joint (DN 80 to DN 500)

This joint has been a success for decades and can be assembled with a TYTON ${ }^{\circledR}$ or the $V^{2} S^{\circledR}-$ T gasket. Depending on the nominal size and the nature of the application, locking is from 2 to 4 locks. It is notable principally for its easy and quick assembly, the reliable high operating pressures and tractive forces and the versatility with which it can be used. A clamping ring can be used on cut pipes. This enables the onsite application of a welded bead to be dispensed with in most cases. Pipes with VRS ${ }^{\circledR}-T$ joints are available in laying lengths of 5 m and 6 m . You will find further information on the VRS ${ }^{\text {- }}$ - joint from $p .18$ on.

The BLS ${ }^{\circledR}$ joint (DN 600 to DN 1000)

In this case a TYTON ${ }^{\circledR}$ gasket is used. The joint is locked by 9 to 14 locking segments which are inserted through openings in the socket and which are distributed round the circumference of the pipe. Pipes with BLS ${ }^{\circledR}$ joints are available in a laying length of 6 m . You will find further information on the BLS ${ }^{\circledR}$ joint from p. 19 on.

Fields of use/advantages

There are almost no limits to the versatility with which pipes and fittings with $V^{-} S^{\circledR}-T$ joints can be used. The quick and easy assembly and the very high allowable operating pressures and tractive forces for which they can be relied on make them suitable for virtually any conceivable application in the laying of pressure pipelines (for water or sewage).

- urban water supply
- replacement of concrete thrust blocks in conventional open trench laying
- bridge pipelines/above-ground pipelines
- temporary pipelines (for temporary water supplies)
- trenchless installation techniques (HDD, burst lining and press-pull techniques, pipe relining, floating-in, etc.)
- snow-making systems
- turbine pipelines
- laying on steep slopes
- fire-fighting and fire-extinguishing pipelines (FM Approval)
- crossings below bodies of water/culvert pipelines
- building services
- use in regions at risk of earthquakes or settlement

The very high angular deflectability of up to a maximum of 5° and the rotatability through 360° make these joints suitable even for the laying of complicated and demanding intersections.

PFA

Under EN 545, the allowable operating pressures (PFA) of the VRS®-T joints have to be stated in manufacturers' catalogues. See the following pages.

PMA $=1.2 \times$ PFA (allowable maximum operating pressure for a short period, e.g. the period of a pressure surge).
PEA $=1.2 \times$ PFA +5 (allowable site test pressure).

The classification into C classes under EN 545 does not apply to positive locking joints. The minimum wall thicknesses therefore differ from those in Table 17 of EN 545 (which applies to non-restrained joints).

Compatibility

There is no compatibility with the positive locking systems used by other manufacturers. For possible solutions in this regard, please get in touch with our Applications Engineering Division.

E-mail address: anwendungstechnik@trm.at

Clamping ring

The use of clamping rings is possible in the majority of cases on pipes of nominal sizes from DN 80 to DN 500. For details of the fields of use of the rings see p. 17 and for installation instructions see p. 72 on By using clamping rings it is possible to dispense with the retrospective application of welded beads to pipes which are cut on site.

2.1 Positive locking joints and pipes

Overview

DN 600 to DN 1000

DN	PFA $^{1)}[$ bar $]$	Allowable tractive force ${ }^{3)}[\mathrm{kN}]$	Max. angular deflection []
$80^{2)}$	100	115	5
$100^{2)}$	75	150	5
$125^{2)}$	63	225	5
$150^{2)}$	63	240	5
200	42	350	4
250	40	375	4
300	40	380	4
400	30	650	3
500	30	860	3
600	32	1,525	2
700	25	1,650	1.5
800	$16 / 25^{2)}$	1,460	1.5
900	$16 / 25^{2)}$	1,845	1.5
1,000	$10 / 25^{2)}$	1,560	1.5

${ }^{1)}$ PFA: allowable operating pressure - also applies to clamping rings; PMA $=1.2 \times$ PFA; PEA = $1.2 \times$ PFA +5 - higher PFA's on enquiry. ${ }^{2)}$ Wall-thickness class K10 under EN 545:2006. ${ }^{3)}$ DN 80 to DN 250 with high-pressure lock - higher tractive forces on enquiry

VRS ${ }^{\ominus}-\mathrm{T}^{\text {joint }}$
DN 80 to DN 500

VRS ${ }^{\text {®-T }}$ joint with clamping ring
DN 80 to DN 500

Notes on the use of VRS ${ }^{\oplus}$ - ${ }^{\text {T joints }}$

- trenchless installation of DN 80 to DN 250 size pipes only with high-pressure lock
- for installation instructions see p. 71
higher pressures are possible, e. g. for snow-making systems or turbine pipelines

Retaining chamber
Clamping ring TYTON ${ }^{\text {® }}$ - or VRS^{\oplus} - - gasket

Tightening torque 60 Nm

Notes on the use of clamping rings

- as a replacement for the welded bead, e.g. on pipes cut on site
- up to PFA of 16 bars in double socket bends, socket spigotbends, 90° flange socket duckfoot bends and 90° duckfoot bends with side outlets; higher PFA's on enquiry
- not in above-ground pipelines or buried pipelines subject to pulsating pressures
- not in trenchless installation techniques
- tightening torque of bolts $\geq 60 \mathrm{Nm}$
- for installation instructions see p. 72

	Dimensions ${ }^{1)}$ [mm]							Weight [kg]				PFA ${ }^{\text {a }}$ [${ }^{\text {bar] }}$			Number of locks ${ }^{3)}$	Allowable tractive force ${ }^{4)}$ [kN]	Max. angular deflection [${ }^{\circ}$]	$\begin{gathered} \text { Min. } \\ \text { radius } \\ {[\mathrm{m}]} \end{gathered}$
DN	d1		D	t	L	a	b	Set of locks	$\begin{gathered} \text { High } \\ \text { pressure } \\ \text { lock } \end{gathered}$	Clamping ring	Gasket	Without high pressure lock	With high pressure lock	Clamping ring				
80	98	$\begin{array}{\|c\|} \hline+1 \\ \hline-2.7 \\ \hline \end{array}$	156	127	86	8	5	0.4	0.3	0.9	0.13	100	110	100	2	115	5	57/69
100	118	+1	182	135	91	8	5	0.4	0.4	1.0	0.16	75	100	75	2	150	5	57/69
125	144	+1	206	143	96	8	5	0.6	0.5	1.4	0.19	63	100	63	2	225	5	57/69
150	170	$\begin{array}{\|c\|} \hline+1 \\ \hline-2.9 \\ \hline \end{array}$	239	150	101	8	5	0.8	0.6	1.7	0.22	63	75	63	2	240	5	57/69
200	222	$\begin{array}{r}+1 \\ \hline-3\end{array}$	293	160	106	9	5.5	1.1	0.8	2.2	0.37	42	63	42	2	350	4	72/86
250	274	$\begin{array}{\|c\|} \hline+1 \\ \hline-3.1 \\ \hline \end{array}$	357	165	106	9	5.5	1.5	1.2	2.7	0.48	40	44	40	2	375	4	72/86
300	326	$\begin{array}{\|c\|} \hline+1 \\ \hline-3.3 \\ \hline \end{array}$	410	170	106	9	5.5	2.7	-	3.6	0.67	40	-	40	4	380	4	72/86
400	429	+1 -3.5 1	521	190	115	10	6	4.4	-	6.0	1.1	30	-	30	4	650	3	95/115
500	532	+1 ${ }_{+}^{+3.8}$	636	200	120	10	6	5.5	-	7.2	1.6	30	-	30	4	860	3	95/115

[^0]VRS®-T pipe
DN 80 to DN 500

Laying length of 5 m .

External coatings

- Zinc coating with PUR-longlife polyurethane finishing layer
- Zinc coating with PUR-TOP Enhanced polyurethane finishing layer plus PE-tape
- WKG insulation
- Other coatings up on request

Internal coatings

Portland cement

- High-alumina cement
- Other coatings up on request

For notes on the fields of use of coatings see chapter 5

Laying length of 6 m .

External coatings

- Cement mortar coating (ZMU)
- Zinc coating with finishing layer
- Zinc-aluminium coating with finishing layer (Zinc PLUS coating)
-WKG insulation
- ZMU PLUS cement mortar coating

Internal coatings

- Blast furnace cement
- High-alumina cement

For notes on the fields of use of the coatings see chapter 5

DN	Dimensions [mm] ${ }^{\text {4) }}$			Total weight [kg]		PFA ${ }^{1)}$ [bar]			Number of locks ${ }^{5}$)	Allowable tractive force ${ }^{6)}$ [kN]	Max. angular deflection []	Min. radius ${ }^{7}$ [m]
	S_{1} Ductile iron			$\begin{aligned} & \text { per } m \\ & \text { pipe }{ }^{2} \end{aligned}$	per m pipe + cement mortar coating ${ }^{3)}$	Without high-pressure lock	With highpressure lock	Clamping ring ${ }^{\text {T }}$				
80	4.7	4	5	16.3	19.4	100	110	100	2	115	5	57/69
100	4.7	4	5	20.0	24.0	75	100	75	2	150	5	57/69
125	4.8	4	5	25.6	30.7	63	100	63	2	225	5	57/69
150	5.0	4	5	31.4	37.5	63	75	63	2	240	5	57/69
200	4.8	4	5	40.9	48.5	42	63	42	2	350	4	72/86
250	5.2	4	5	54.0	63.7	40	44	40	2	375	4	72/86
300	5.6	4	5	73.9	81.3	40	-	40	4	380	4	72/86
400	6.4	5	5	104.0	117.8	30	-	30	4	650	3	95/115
500	7.2	5	5	142.4	156.8	30	-	30	4	860	3	95/115

${ }^{1)}$ PFA: allowable operating pressure; PMA $=1.2 \times$ PFA; PEA $=1.2 \times$ PFA $+5-$ higher PFA's on enquiry, ${ }^{2)}$ Theoretical weight per m pipe inc. cement mortar lining, zinc (zinc-aluminium) and finishing layer, ${ }^{3)}$ Theoretical weight per m pipe inc. cement mortar coating \& lining and zinc, 4) s1 = min. dimension, s2/s3 = nominal dimensions. Note that tolerances are possible
${ }^{\text {5) }}$ Plus high-pressure lock if required with DN 80 to DN 250 sizes, ${ }^{6)}$ Higher tractive forces on enquiry, 7) Min. radius of curves (5 m pipe/ 6 m pipe), which results from the angular deflection possible at the sockets applies to both open trench and trenchless laying, ${ }^{8)}$ Approx. assembly time of the joint, not including any protection it may be given, ${ }^{9)}$ See notes on the use of clamping rings, page 72

BLS ${ }^{\ominus}$ joint
DN 600 to DN 1000

DN	Dimensions [mm] ${ }^{\text {1 }}$							Weight [kg]		Number of locks	PFA ${ }^{2 /}$ [bar]	Allowable tractive force ${ }^{3)}$ [kN]	Max. angular deflection ["]	Min. radius ${ }^{4}$ [m]
	d_{1}		D	t	L	a	b	Set of locks	Gasket					
600	635	+1	732	175	116	9	6	9	2.3	9	32	1,525	2.0	172
700	738	+1 -4.3	849	197	134	9	6	11	4.3	10	25	1,650	1.5	230
800	842	+1 -4.5	960	209	143	9	6	14	5.2	10	16/25 ${ }^{\text {¢ }}$	1,460	1.5	230
900	945	+1 -4.8	1,073	221	149	9	6	13	6.3	13	16/25 ${ }^{\text {¢ }}$	1,845	1.5	230
1,000	1,048	+1 -5	1,188	233	159	9	6	16	8.3	14	10/25 ${ }^{\text {¢ }}$	1,560	1.5	230

[^1]${ }^{5}$) Approx. assembly time of the joint. not including any protection it may be given, ${ }^{6)}$ Wall-thickness class K 10 under EN 545:2006

BLS ${ }^{\oplus}$-pipe
 DN 600 to DN 1000

Laying length of 6 m .

External coatings

- Cement mortar coating (TRM ZMU)
- Zinc coating with finishing layer
- Zinc-aluminium coating with finishing layer (Zinc PLUS)
- WKG insulation

Internal coatings

- Blast furnace cement
- High-alumina cement

For notes on the fields of use of the coatings see chapter 5

DN	Dimensions [mm] ${ }^{\text {4) }}$			Weight [kg]		Number of locks	PFA ${ }^{\text { }}$ [bar]	Allowable tractive force ${ }^{5}$) $[\mathrm{kN}]$	Max. angular deflection []	Minimum radius ${ }^{6}$ [m]
	S_{1}	Cement mortar lining S_{2}	Cement mortar coating S_{3}	permpipe ${ }^{\text {a }}$	$\begin{gathered} \text { perm mipe + } \\ \text { cement mortar } \\ \text { coating }{ }^{\text {3) }} \end{gathered}$					
600	8.0	5	5	186.4	206.6	9	32	1,525	2.0	172
700	8.8	6	5	235.0	258.3	10	25	1,650	1.5	230
800	9.6	6	5	294.6	321.3	10	16/25 ${ }^{\text {8) }}$	1,460	1.5	230
900	10.4	6	5	355.2	385.0	13	16/25 ${ }^{\text {8) }}$	1,845	1.5	230
1,000	11.2	6	5	420.7	453.9	14	10/25 ${ }^{\text {8) }}$	1,560	1.5	230

${ }^{1)}$ PFA: allowable operating pressure; PMA $=1.2 \times$ PFA; PEA $=1.2 \times$ PFA $+5-$ higher PFA's on enquiry, ${ }^{2)}$ Theoretical weight per m pipe inc. cement mortar lining, zinc (zinc-aluminium) and epoxy finishing layer, ${ }^{33}$ Theoretical weight perm pipe inc. cement mortar lining \& coating and zinc,
${ }^{4} \mathrm{~S}_{1}=$ min. dimension, $\mathrm{S}_{2} / \mathrm{s}_{3}=$ nominal dimensions. Tolerances are possible
${ }^{5)}$ Higher tractive forces on enquiry, ${ }^{6}$ (Min. radius of curves, which results from the angular deflection possible at the sockets - applies to both open trench and trenchless laying, " Approx. assembly time of the joint not including any protection it may be given. 8) Wall-thickness class K 10 under EN 545:2006

2.2 Fittings with positive locking joints

Compatibility

There is no compatibility with positive locking systems used by other manufacturers. For possible solutions in this regard, please get in touch with our Applications Engineering Division.

E-mail address: office@trm.at

Laying lengths

Except where otherwise noted, the laying lengths Lu of fittings conform to the A series in EN 545.

Flanged fittings (see chapter 4)

When ordering flanged fittings, it is essential to give the PN pressure rating required. Accessories such as hex-head bolts, nuts, washers and gaskets must be obtained from specialist suppliers.

Coating

Except where otherwise specified, all the fittings shown below are provided internally and externally with an epoxy coating at least $250 \mu \mathrm{~m}$ thick. The coating complies with EN 14901 and meets the requirements of the Quality Association for the Heavy Duty Corrosion Protection of Powder Coated Valves and Fittings (GSK).
All fittings to EN 545, Annex D.2.3., can thus be installed in soils of any desired corrosiveness.
For notes on the fields of use of the coating see chapter 5 .

RAL GÜTEZEICHEN SCHWERER KORROSIONSSCHUTZ
VON ARMATUREN UND FORMSTUCKEN

Allowable operating pressure (PFA)

(except where otherwise stated)

DN	PFA [bar]		
	VRS ${ }^{\text {®-T }}$	BLS ${ }^{\text {® }}$	Flanged
80-300	100	-	$P F A=P N$
400	30	-	
500	30	-	
600	-	40	
700	-	25	
800	-	25	
900	-	25	
1,000	-	25	

PFA: maximum allowable operating pressure in bars

- PMA $=1.2 \times$ PFA (allowable maximum operating pressure for a short period, e.g. the period of a pressure surge)
- $P E A=1.2 \times P F A+5$ (allowable site test pressure)

Scope of supply

The fittings supplied by TRM include all the gaskets, locks and other securing components required for all the sockets. For flanged joints, the gaskets, bolts, nuts and washers are not included in the scope of supply.

MMK 11 fittings

111_{4}° double socket bends
1 to EN 545

DN	Dimensions [mm]	PFA [bar]	Weight [kg] ~
	L_{u}		
VRS®-T			
80	30	100	10.1
100	30		14.0
125	35		18.6
150	35		23.3
200	40		38.2
250	50		52.3
300	55		70.4
400	65	30	116.0
500	75		171.5
BLS ${ }^{\text {® }}$			
600	85	40	186.0
700	95	25	277.0
800	110		378.0
900	120		532.0
1,000	130		614.0

MMK 30 fittings
30° double socket bends
to DIN 28650

MMK 22 fittings
$2 \mathbb{1}^{1} 2^{\circ}$ double socket bends \bigcirc
to EN 545

MMK 45 fittings

45° double socket bends
to EN 545

DN	Dimensions [mm]	PFA [bar]	Weight [kg] ~
	L_{u}		
VRS®-T			
80	55	100	11.0
100	65		14.7
125	75		20.8
150	85		26.3
200	110		41.5
250	130		65.1
300	150		86.4
400	195	30	157.0
500	240		227.0
BLS ${ }^{\text {® }}$			
600	285	40	261.0
700	330	25	376.0
800	370		548.0
900	415		716.0
1,000	460		879.0

MMQ fittings
90° double socket bends
to EN 545

DN	dn	Dim	nm]	PFA [bar]	Weight [kg] ~			
		L_{u}	I_{u}					
VRS ${ }^{\text {®-T }}$								
80	80	170	85	100	16.1			
100	80	170	95		20.0			
	100	190	95		22.4			
125	80	170	105		25.1			
	100	195	110		28.1			
	125	225	110		31.0			
150	80	170	120		33.6			
	100	195	120		34.5			
	125	255	125		39.0			
	150	255	125		41.1			
200	80	175	145		46.2			
	100	200	145		47.3			
	125	255	145		50.0			
	150	255	150		54.3			
	200	315	155		63.1			
250	80	180	170		72.0			
	100	200	170		63.9			
	125	230	175		78.0			
	150	260	175		70.6			
	200	315	180		77.8			
	250	375	190		89.1			
300	80	180	195	100	93.0			
	100	205	195		80.2			
	150	260	200		88.6			
	200	320	205		96.6			
	250	375	210		109.0			
	300	435	220		127.4			
400*	400	560	280	30	236.0			
500*	500	800	400		396.8			

*To manufacturer's standard

MK 11 and MK 22 fittings
1114° and $22^{1} 1^{\circ}$ single socket bends
to manufacturer's standard

DN	Dimensions [mm]		PFA [bar]	Weight [kg] ~
	I_{u}	L_{u}		
$\mathrm{VRS}^{\oplus-T ; ~} \mathrm{C}=111^{\circ}{ }^{\circ}$				
80	30	175	100	8.4
100	30	185		11.1
125	35	200		15.1
150	35	210		20.1
200	40	230		32.7
250	50	250		51.0
300	55	270		71.0
400	65	375	63	125.0
500	75	405	50	220.0
DN	Dimensions [mm]		PFA [bar]	Weight [kg] ~
	I_{u}	L		
$\mathrm{VRS}^{\oplus}-\mathrm{T} ; \mathrm{a}=2212^{\circ}$				
80	40	185	100	8.7
100	40	195		11.6
125	50	215		15.9
150	55	230		21.5
200	65	255		35.3
250	75	275		53.0
300	85	300		73.0
400	110	420	63	138.8
500	130	460	50	220.0

MK 30 and MK 45 fittings

30° and 45° single socket bends
2
to manufacturer's standard

DN	Dimensions [mm]		PFA [bar]	Weight [kg] ~
	I_{u}	L.		
VRS ${ }^{\text {® }}$-T; $\alpha=30^{\circ}$				
80	45	190	100	8.9
100	50	205		11.9
125	55	220		16.2
150	65	240		22.4
200	80	270		36.5
250	95	295		57.0
300	110	320		82.0
400	140	450	63	157.2
500	170	495	50	224.0
DN	Dimensions [mm]		PFA [bar]	Weight [kg] ~
	I_{4}	L_{u}		
VRS ${ }^{\text {® }}$-T; $\alpha=45^{\circ}$				
80	55	200	100	9.1
100	65	220		12.3
125	75	240		17.0
150	85	260		24.2
200	110	300		39.7
250	130	335		60.5
300	150	365		87.3

*To manufacturer's standard

DN	L [mm]	Weight [kg]					
		PN 10	PN 16	PN 25	PN 40	PN 63	PN 100
VRS ${ }^{\text {® }}$-T							
80	350	7.5				11.9	11.2
100	360	8.5		10.4		14.1	15.7
125	370	12.4		13.1	14.3	20.0	22.8
150	380	19.3		21.0	21.0	31.9	28.0
200	400	25.2	25.2	26.0	30.8	46.6	55.4
250	420	35.1	35.2	37.7	45.4	-	-
300	440	46.0	44.8	49.1	62.0	-	-
400	480	104.0	109.0	114.0	154.0*	-	-
500	500	146.0	156.0	161.0	-	-	-
BLS ${ }^{\text {® }}$							
600	560	134.3	160.3	174.3	235.3	-	-
700	600	180.6	195.6	229.6	-	-	-
800	600	228.0	247.0	296.0	-	-	-
900	600	348.0	359.0	-	-	-	-
1,000	600	503.0	538.0	-	-	-	-

[^2]

There are cases where collars with V RS $^{\oplus}-$ T joints cannot be fully slid on.
They must be used only with TYTON ${ }^{\circledR}$ gaskets.

EU fittings
Flanged sockets
to EN 545

\longmapsto

DN	$L_{u}[\mathrm{~mm}]$	z [mm]	Weight [kg]					
			PN 10	PN 16	PN 25	PN 40	PN 63	PN 100
VRS ${ }^{\text {-T }}$								
80	130	90				0.2	12.3	-
100	130	90		12.2		12.7	16.3	20.7
125	135	95		15.5	17.0	17.0	26.8	-
150	135	95		19.9	22.1	22.1	31.5	33.4
200	140	100	28.7	28.9	29.6	34.6	49.0	56.4
250	145	105	40.6	39.7	44.3	51.9	67.5	86.4
300	150	110	52.3	52.1	56.1	69.9	84.9	120.0
400	160	120	85.5	89.0	102.0	127.5	-	-
500	170	130	125.0	140.5	151	162.0*	-	-
BLS ${ }^{\text {® }}$								
600	180	140	137.5	167.5	173.5	209.0*	-	-
700	190	150	202.0	248.0	278.0	-	-	-
800	200	160	269.5	270.0	316.0	-	-	-
900	210	170	347.0	370.0	427.0	-	-	-
1,000	220	180	439.0	464.0	549.0	-	-	-

[^3]MMA fittings
Double socket tees with flanged branch
to EN 545

[^4]O fittings
Spigot end caps
to manufacturer's standard

$\mathrm{t}[\mathrm{mm}]$						$\mathrm{D}[\mathrm{mm}]$	PFA [bar]	Weight [kg]
VRS $^{\ominus}$-T O-Stücke								
400	225	540	30	117				
500	240	650	30	170				

P plugs Socket plugs to manufacturer's standard					
DN	L. [mm]	1., [mm]	d [mm]	PFA [bar]	Masse [kg]
VRS ${ }^{\text {® }}$-T P-Stopfen					
80	170	86	M 12	100	4.1
100	175	91	M 12		4.4
125	195	96	M 16		6.7
150	200	101	M16		9.2
200	210	106	M 16		14.5
250	250	106	M20		27.2
300	300	106	M20		49.4

${ }^{\text {1) }}$ PFA of 100 with high-pressure lock ${ }^{\text {2 }}$ Max. PFA of 32

HAS fittings (A fittings)
House service connection fittings
with outlet with $?^{\prime \prime}$ female thread
1to manufacturer's standard

DN	L. [mm]	1. [mm]	PFA [bar]	Weight [kg]
VRS®-T HAS-fittings				
80	305	215	100	10.5
100	315	225		13.8
125	325	235		17.8
150	340	250		23.1
200	355	265		34.8
250	370	275		54.0
300	380	285		72.0

Marking of fittings

All fittings produced by member companies of the "Fachgemeinschaft Gussrohrsysteme/European Association for Ductile Iron Pipe Systems (FGR/EADIPS)" carry the "FGR" mark indicating that all the guidelines required for the award of the "FGR Quality Mark" have been complied with.
As well as this, all fittings are marked with their nominal sizes and bends are marked with their respective angles.
Flanged fittings have the pressure ratings PN 16, 25 or 40 cast or stamped onto them. No pressure rating appears on flanged fittings for PN 10 or on any socket fittings.
To identify their material as "ductile cast iron", fittings are marked with three raised dots arranged in a triangle (\because.) on their outer surface. In special cases, there may be further markings which are specified as needing to be applied.

3 - THE NON-POSITIVE LOCKING SYSTEM

3.1 Overview

This Chapter deals only with non-positive locking push-in joints.

Dealt with below are the following non-restrained joints:

- The TYTON joint (TYT) to DIN 28603 - DN 80 to DN 1,000

The TYTON joint has been the leading joint for pipes and fittings on the international market since 1965. It can be deflected angularly to a maximum of 5°, is resistant to the penetration of roots and is leaktight at any desired internal water pressure.

- The bolted gland joint (STB) to DIN 28602 - DN 400 to DN 1,000 Available for certain fittings such as flanged sockets and collars Suitable above all for later connections into existing pipelines.

Pipes and fittings with non-positive locking joints are designed primarily for conventional open trench laying

The sizing of thrust blocks and of the lengths of pipelines needing to be restrained is dealt with in outline in Chapter 8.

PFA - allowable operating pressure
Under EN 545:2010, ductile iron pipe with non-restrained push-in joints (e.g. TYTON ${ }^{\circledR}$ joints) are divided into pressure classes. These pressure classes are also known as C classes. The maximum PFA of a pipe corresponds to its pressure class (e.g. C $50=$ PFA of 50 bars). This applies only to non-restrained pipes.

TYTON ${ }^{\circledR}$ push-in joint

to DIN 28603

DN 80 to DN 600

Socket for fittings

DN	Dimensions [mm]			Weight [kg] ~				Max angular deflection
				Socket			Gasket	
	$\varnothing \mathrm{d}_{1}$	Ф D ${ }^{1}$	t	Pipe	Fitting	Flanged socket		
80	98	142	84	3.4	2.8	2.4	0.13	
100	118	163	88	4.3	3.3	3.1	0.16	
125	144	190	91	5.7	4.5	4.0	0.19	
150	170	217	94	7.1	5.6	4.9	0.22	5°
200	222	278	100	10.3	8.0	7.1	0.37	
250	274	336	105	14.2	11.1	9.7	0.48	
300	326	385	110	18.6	14.3	12.5	0.67	
350	378	448	110	23.7	17.1	15.2	0.77	
400	429	500	110	29.3	20.8	18.6	1.1	4°
500	532	607	120	42.3	31.7	27.6	1.6	
600	653	732*	120	59.3	42.3	36.2	2.3	
700	738	849*	197	79.1	71.2	59.1	4.3	
800	842	960*	209	102.6	95.4	79.8	5.2	3°
900	945	1,073*	221	129.9	150.3	122.7	6.3	
1,000	1,048	1,188*	233	161.3	186.9	152.1	8.3	

1) Richtwert; *kleinere D auf Anfrage

Bolted gland joint (STB)
to DIN 28602

DN	Dimensions [mm]				n	Weight [kg] ~				Max. angular deflection	PFA
	\varnothing d	$\emptyset \mathrm{D}$	$\varnothing \mathrm{d}_{2}$	1		t	Bolted gland ring	Gasket	Teehead bolt		
400	429	570	M 20	90	12	132	10.6	0.8	5.5	3°	25
500	532	680	M 20	100	16	138	15.0	1.1	7.7		25
600	635	790	M 20	100	16	143	20.9	1.5	7.7	2°	25
700	738	900	M 20	110	20	149	27.2	1.9	10.0		16
800	842	1,010	M 20	110	24	154	34.1	2.3	12.0	$1.5{ }^{\circ}$	16
900	945	1,125	M 20	120	24	160	44.0	2.9	12.5		16
1,000	1,048	1,250	M 24	120	24	165	56.9	3.5	18.5		16

PFA: allowable operating pressure in bars; may be lower depending on the pressure class PMA $=1.2 \times$ PFA; PEA $=1.2 \times$ PFA +5

BRS ${ }^{\circ}$ joint

DN	PFA	Max. angular deflection	Weight [kg] ~ Gasket
80	32	3°	0.15
100	32	3°	0.17
125	25	3°	0.20
150	25	3°	0.24
200	25	3°	0.41
250	25	3°	0.56
300	25	3°	0.93
350	25	3°	1.15
400	16	2°	1.44
500	16	2°	2.20
600		2°	2.93

PFA: allowable operating pressure in bars; may be lower depending on the pressure class $P M A=1.2 \times P F A ; P E A=1.2 \times P F A+5$
3.2 Tyton ${ }^{\circledR}$ pipes - 6 m laying length

TYTON ${ }^{\ominus}$ pipes -6 m laying length
DN 80 to DN 1000
to EN 545:2010

External coatings

- cement mortar coating (TRM ZMU)
- zinc coating with finishing layer
- zinc-aluminium coating with finishing layer (TRM Zinc PLUS)
- WKG coating

Internal coatings

- blast furnace cement
- high-alumina cement

For notes on the fields of use of the coatings see Chapter 5

${ }^{\text {1) }}$ C4O under EN545:2006; ${ }^{\text {2) }}$ K9 under EN 545:2006; ${ }^{\text {3) }}$ K1O under EN 545:2006
s_{1}) Minimum wall thickness in mm; s_{2}) Nominal thickness of cement mortar lining in mm; s_{3}) Nominal thickness of ZMU in mm ; Weight of the pipes = theoretical figures in kg inc. cement mortar lining, zinc-aluminium coating and epoxy finishing layer; Weight of $Z M U=$ additional weight of $Z M U$ in kg ;

The maximum PFA of a pipe corresponds to its pressure class (e.g. C $50=$ PFA of 50 bars): PFA (BRS) = allowable operating pressure in bars with BRS gasket; $P M A=1.2 \times$ PFA; $P E A=1.2 \times P F A+5$;
Inside green frames: all coatings are possible; outside: only Zinc Plus

3.3 Tyton ${ }^{\circledR}$ pipes - 5 m laying length

TYTON ${ }^{\ominus}$ pipes -5 m laying length

DN 80 to DN 500
to EN 545:2010

External coatings

- Zinc coating with PUR-longlife finishing layer
- Zinc coating with PUR-TOP finishing layer
- WKG coating
- Other coatings up on request

Internal coatings

- Portland cement
- High-alumina cement
- Other coatings up on request

For notes on the fields of use of the coatings see Chapter 5

DN	$\begin{gathered} \mathrm{d}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	C 30		C 40			C 50			C 64			C 100			S_{2}
		S_{1}	Weight [kg]	S_{1}	Weight [kg]	$\begin{gathered} \text { PFA } \\ \text { (BRS) } \end{gathered}$	S_{1}	Weight [kg]	$\begin{gathered} \text { PFA } \\ \text { (BRS) } \end{gathered}$	S_{1}	Weight [kg]	$\begin{gathered} \text { PFA } \\ \text { (BRS) } \end{gathered}$	S_{1}	Weight [kg]	$\begin{gathered} \text { PFA } \\ \text { (BRS) } \end{gathered}$	
80	$98{ }_{-27}^{+1}$												$4.7{ }^{3)}$	79.5	32	4
100	$118{ }_{-28}^{\text {-1 }}$												$4.7{ }^{3}$)	97.3	32	4
125	$144{ }_{-1}^{+1} 8$									$4.8{ }^{3)}$	123.8	25	5.0	126.7	25	4
150	$170{ }_{-1}^{+1}$									$4.7{ }^{\text {2) }}$	146.3	25	5.9	167.1	25	4
200	$222{ }_{-30}$									$5.0^{2)}$	202.5	25	7.7	264.1	25	4
250	$274{ }_{-31}^{+1}$			3.9	215.1		$5.2{ }^{2)}$	260.1	25	6.1	285.9	25	9.5	382.0	25	4
300	$326{ }_{-33}^{+1}$			4.6	293.5		$5.7{ }^{\text {2) }}$	331.6	25	7.3	386.4	25				4
400	$429{ }_{-35}^{+1}$	4.8	423.8	$6.4{ }^{\text {2) }}$	497.2	16	7.5	547.3	16	9.6	642.3	16				5
500	$532{ }_{-38}^{1+}$	5.6	585.3	$7.5^{2)}$	693.7	16	9.3	795.6	16							5

[^5]finishing layer; The maximum PFA of a pipe corresponds to its pressure class (e.g. C $50=$ PFA of 50 bars): PFA (BRS) = allowable operating pressure in bars with BRS gasket;
PMA $=1.2 \times$ PFA; $P E A=1.2 \times$ PFA +5 ;

3.4 Fittings with non-positive locking joints

Compatibility

Except where otherwise noted, all fittings comply with DIN 28603 (TYTON ${ }^{\circledR}$). This means that TYTON ${ }^{\circledR}$-SIT-PLUS ${ }^{\circledR}$ gaskets can also be inserted in their sockets, thus producing the friction locking BRS ${ }^{\circledR}$ push-in joint.

Laying lengths

Except where otherwise noted, the laying lengths Lu of fittings conform to the A series in EN 545.

Flanged fittings (see Chapter 4)

When ordering flanged fittings, it is essential to give the PN pressure rating required. Accessories such as hex-head bolts, nuts, washers and gaskets must be obtained from specialist suppliers.

Coating (see Chapter 5)

Except where otherwise specified, all the fittings shown below are provided internally and externally with an epoxy coating at least 250 $\mu \mathrm{m}$ thick.
The coating complies with EN 14901 and meets the requirements of the Quality Association for the Heavy Duty Corrosion Protection of Powder Coated Valves and Fittings (GSK)

All fittings to EN 545, Annex D.2.3., can thus be installed in soils of any desired corrosiveness.

RAL GÜTEZEICHEN
SCHWERER KORROSIONSSCHUTZ

Allowable operating pressure (PFA)
(except where otherwise specified)

DN	PFA ${ }^{1)}$ [bar]			
	TYTON ${ }^{\text {® }}$	BRS ${ }^{\text {a }}$	STB	Flange
80	100	32		$P F A=P N$
100	100	32		
125				
150	64		-	
200		25		
250		25		
300	50			
350				
400		16		
500	40		25	
600		10		
700				
800				
900	30		16	
1,000				

1) PFA: allowable operating pressure in bars. PMA $=12 \times$ PFA. PEA $=12 \times$ PFA +5 2) PFA depends on the C class of the pipe used, see p. 27

Scope of supply

The socket fittings supplied include the gaskets required and with screwed socket joints and bolted gland joints they include the additional components required (slide rings, screw rings, bolted gland rings, tee-head bolts). For flanged joints, the gaskets, bolts, nuts and washers are not included in the scope of supply.

MMK 30 fittings
30° double socket bends
to DIN 28650
\cdots

DN	Dimensions [mm]	PFA [bar]	Weight [kg] ~
	L_{u}		
80	45	100	7.7
100	50		9.7
125	55	64	14.0
150	65		18.0
200	80		22.0
250	95	50	32.0
300	110		43.2
350	125		71.5
400	140	40	85.3
500	180		109.2
600	200		155.9
700	230	30	275.3
800	260		345.9
900	290		496.3
1,000	320		630.3

MMK R2 fittings
$22 \not 1^{\circ}$ double socket bends
to EN 545
$)$

DN	Dimensions [mm]	PFA [bar]	Weight [kg] ~
	L_{u}		
80	40	100	7.7
100	40		9.4
125	50	64	13.3
150	55		17.5
200	65		21.0
250	75	50	30.7
300	85		40.4
350	95		64.6
400	110	40	80.2
500	130		100.4
600	150		140.5
700	175	30	185.7
800	195		315.8
900	220		456.0
1,000	240		575.9

MMK 45 fittings
45° double socket bends
to EN 545

DN	$\frac{\text { Dimensions [mm] }}{L_{u}}$	PFA [bar]	Weight [kg] ~
80	55	100	8.1
100	65	100	10.0
125	75		14.1
150	85	64	18.4
200	110		24.6
250	130		35.7
300	150	50	48.7
350	175		76.9
400	195		86.0
500	240	40	127.0
600	285		183.6
700	330		296.7
800	370	30	406.1
900	415	30	577.9
1,000	460		737.2

MMQ fittings
90° double socket bends
to EN 545

DN	Dimensions [mm]	PFA [bar]	Weight [kg] ~
	L_{u}		
80	100	100	8.2
100	120		10.6
125	145	64	15.6
150	170		19.6
200	220		30.9
250	270	50	50.6
300	320		69.1
$350{ }^{1)}$	410		96.8
$400{ }^{1)}$	430	40	119.0
$500{ }^{1)}$	550		199.4
$600{ }^{1)}$	645		365.0
$700{ }^{1)}$	720	30	449.0
$800^{1)}$	800		613.0

${ }^{1)}$ To manufacturer's standard

DN	Dimensions [mm]		PFA [bar]	Weight [kg] ~
	L_{u}	I_{u}		
80	248	38	100	8.1
100	253	43		9.7
125	274	49	64	15.1
150	299	55		18.4
200	331	66		29.2
250	260	75	50	37.8
300	265	90		50.2
350	270	100		52.0
400	278	110	40	76.7
500	300	135		97.0
600	357	155		163.0
700	420	190	30	336.0
800	455	205		460.0

MK 11 fittings
1114° single socket bends
to manufacturer's standard

DN	Dimensions [mm]		PFA [bar]	Weight [kg] ~
	L_{u}	I_{u}		
80	240	30	100	7.6
100	243	33		9.8
125	261	36	64	14.0
150	284	40		18.0
200	311	46		27.0
250	255	50	50	37.8
300	260	60		47.0
350	235	65		46.0
400	238	70	40	66.9
500	250	85		83.2
600	287	95		163.0
700	340	110	30	249.0
800	375	125		286.0

MK 30 fittings

$\mathbf{3 0}^{\circ}$ single socket bends
to manufacturer's standard

DN	Dimensions [mm]		PFA [bar]	Weight [kg] ~
	Lu	I_{4}		
80	253	44	100	7.4
100	260	50		10.8
125	283	57	64	15.1
150	309	65		20.0
200	345	80		30.8
250	270	95	50	38.9
300	280	110		52.9
350	295	125		56.0
400	308	140	40	76.5
500	335	170		107.0
600	412	200		178.0
700	480	250	30	286.0
800	510	260		350.0

MK $\mathbf{4 5}$ fittings
to manufacturer's standard

DN	Dimensions [mm]		PFA [bar]	Weight [kg] ~
	Lu	${ }_{u}$		
80	265	55	100	8.4
100	274	65		10.8
125	301	76	64	16.2
150	331	87		20.5
200	374	109		33.5
250	300	130	50	44.3
300	315	155		59.4
350	345	175		68.0
400	368	200	40	91.0
500	405	240		187.0
600	529	285		250.5
700	610	380	30	441.0
800	625	370		-

U fittings
Collars
Collars
2

DN	Joint	L [mm]	PFA [bar]	Weight ${ }^{1)}$ [kg]
500	Bolted gland	200		119.3
600		210	25	162.7
700		220	16	210.3
800		230		249.9
900		240		305.0
1,000		250		386.0

[^6]MQ fittings
$9 \mathbf{0}^{\circ}$ single socket bends
to manufacturer's standard

DN	Dimensions [mm]		PFA [bar]	Weight [kg] ~
	L_{u}	I_{u}		
80	312	102	100	9.0
100	333	123		11.2
125	374	49	64	18.4
150	419	174		25.4
200	491	226		43.8
250	583	280	50	76.1
300	660	330		83.2
350	580	410		139.0
400	625	430	40	186.3
500	715	550		235.4
600	805	645		314.0
700	900	720	30	473.0
800	1,080	800		644.5

MMB fittings

All-socket tees with 90° branch
to EN 545

DN	dn	L_{u} [mm]	$\mathrm{I}_{\text {u }}$ [mm]	PFA [bar]	Weight [kg]
80	$40^{12)}$	170	80	40	10.5
	80		85	64	13.7
100	$40^{122)}$	190	90	40	13.6
	80		95	64	14.7
	100				16.6
125	$40^{122)}$	170	100	40	15.1
	80		105	64	16.5
	100	195	110		17.8
	125	225	110		19.9
150	$40^{122)}$	170	115	40	18.2
	80		120	62	19.9
	100	195			20.9
	150	255	125		25.5
200	$40^{12)}$	200	140	40	29.5
	80^{17}		145	50	30.0
	100				31.0
	150	255	150		41.0
	200	315	155		44.6
250	80^{17}	200	170	43	44.4
	100		175		45.3
	125^{17}		175		45.5
	150	260	180		50.4
	200	315	185		54.4
	250	375	190		63.9
300	80^{17}	205	195	40	55.5
	100	205	200		57.0
	$150{ }^{1)}$	320	200		60.7
	200	320	205		64.4
	$250{ }^{1)}$	430	210		79.6
	300	430	215		89.4

${ }^{\text {1) }}$ To manufacturer's standard; 2) Screwed socket joint; weight not including screw ring

MMR fittings
Double socket tapers
to EN 545

${ }^{1)}$ To manufacturer's standard

O fittings Spigot end caps

to manufacturer's standard

DN 80 to DN 250
DN 300 to DN 600

DN	Dimensions [mm]		max. PFA [bar]	Weight [kg] ~
	D	t 1		4.5
80	146	84	25	4.8
100	166	88	25	6.0
125	193	91	25	8.0
150	224	94	25	12.0
200	280	100	25	19.0
250	336	105	25	27.0
300	391	110	25	34.0
350	450	110	25	45.0
400	503	110	25	73.0
500	598	120	25	110.0
600	707	120	25	

DN	Joint	Dimensions [mm]				Max. PFA		
[bar]							\quad	Weight
:---:								
[kg] \sim								

DN	Dimensions [mm]						Weight [kg] ~			
	L_{1}	$\mathrm{~L}_{2}$	c	$\square \mathrm{d}$	PN1O	PN16	PN25	PN40		
80	165	145	110	180	15.3			18.4		
100	180	158	125	200		18.4				

Screw rings for P socket plugs
to manufacturer's standard

DN	Joint	Dimensions [mm]	Max. PFA [bar]	Weight [kg] ~
		L		
40	Screwed socket	65	16	1.6
50	Screwed socket	67		1.8
80	Screwed socket	72		2.9
100	Screwed socket	75		3.4
125	Screwed socket	78		4.4
150	Screwed socket	81		5.5
200	Screwed socket	86		9
250	Screwed socket	92		13
300	Screwed socket	94		17.5

Screw rings for P socket plugs are used in conjunction with P socket plugs for closing off screwed socket joints.

Flanged socket fittings
 EU fittings
 Flanged sockets
 to EN 545

${ }^{1)}$ Guideline dimension for installation, ${ }^{\text {a) }}$ Weight of screwed socket joint or bolted gland joint not including screw ring or bolted gland ring respectively

${ }^{1)}$ To manufacturer's standard

Miscellaneous

Weld-on connections
for ductile iron pipes
Straight connections with female thread

| Nominal
 size of
 connection | Radius | For pipes
 of nominal
 sizes | Dimensions [mm] | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Weight

R has to be adapted for pipes of other nominal sizes (DN's)

Marking of fittings

All fittings produced by member companies of the "Fachgemeinschaft Gussrohrsysteme/European Association for Ductile Iron Pipe Systems (FGR/EADIPS)" carry the "FGR" mark indicating that all the guidelines required for the award of the "FGR Quality Mark" have been complied with.
As well as this, all fittings are marked with their nominal sizes and bends are marked with their respective angles.
Flanged fittings have the pressure ratings PN 16, 25 or 40 cast or stamped onto them. No pressure rating appears on flanged fittings for PN 10 or on any socket fittings.
To identify their material as "ductile cast iron", fittings are marked with three raised dots arranged in a triangle (\therefore) on their outer surface. In special cases, there may be further markings which are specified as needing to be applied.

4 - FLANGED JOINTS, PIPES AND FITTINGS

Introduction

The flanged joints described in this Chapter comply with EN 1092-2. The flanges may be integrally cast, bolted on or welded on.

Regardless of the material of which they are made, all flanges of the same DN and the same PN can be combined with one another. Shown on the following pages are flanged joints of the PN 10, PN 16, PN 25 and PN 40 pressure ratings.

PN 63 and PN 100 flanges are also possible. For further information on them see our leaflet entitled "Ductile iron pipe systems for Snow-making systems".

Fields of use/advantages

Flanged joints are restrained joints. Their primary field of use is above-ground pipeline laying, equipment in manholes, and building services. The standardised hole patterns also allow them to be used for transitions between different materials.

4.1 Flanged joints

PN 10 flanged joints

to EN 1092-2
Bolts, nuts, washers and gaskets should be obtained from other suppliers.

When buried pipelines are laid, flanges are used above all for the installation of shut-off devices.

PFA - allowable operating pressure

- the stated PN defines the allowable operating pressure (PFA)
- PMA = $1.2 \times$ PFA (allowable maximum operating pressure for a short period, e.g. the period of a pressure surge)
- PEA = 1.2 X PFA + 5 (allowable site test pressure).

PN 16 flanged joints

to EN 1092-2
Bolts, nuts, washers and gaskets
should be obtained from other suppliers.

DN	Dimensions [mm]							Bolts		
	Flanges				Gasket					
	$\emptyset \mathrm{D}$	b_{1}	\varnothing k	$\emptyset \mathrm{d}_{1}$	d_{2}	d_{3}	b_{2}	Number	Thread	L
DN 40 to DN 80 are as for PN 25										
100	220	19	180	19	115	162	5	8	M 16	80
125	250	19	210	19	141	192	5	8	M 16	80
150	285	19	240	23	169	218	5	8	M 20	80
200	340	20	295	23	220	273	6	12	M 20	80
250	400	22	355	28	273	329	6	12	M 24	90
300	455	24.5	410	28	324	384	6	12	M 24	100
350	520	26.5	470	28	368	444	7	16	M 24	100
400	580	28	525	31	420	495	7	16	M 27	110
500	715	31.5	650	34	520	617	7	20	M 30	120
600	840	36	770	37	620	734	7	20	M 33	130
700	910	39.5	840	37	720	804	8	24	M 33	140
800	1,025	43	950	41	820	911	8	24	M 36	150
900	1,125	46.5	1,050	41	920	1,011	8	28	M 36	160
1,000	1,255	50	1,170	44	1,025	1,128	8	28	M 39	170

PN 25 flanged joints

to EN 1092-2
Bolts, nuts, washers and gaskets
should be obtained from other suppliers.

DN	Dimensions [mm]							Bolts		
	Flanges				Gasket					
	ø D	b_{1}	\varnothing k	$\emptyset \mathrm{d}_{1}$	d_{2}	d_{3}	b_{2}	Number	Thread	L
DN 40 to DN 100 are as for PN 40										
125	270	19	220	28	141	194	4.5	8	M 24	90
150	300	20	250	28	169	224	5	8	M 24	90
200	360	22	310	28	220	284	6	12	M24	90
250	425	24.5	370	31	273	340	6	12	M 27	110
300	485	27.5	430	31	324	400	6	16	M 27	110
350	555	30	490	34	368	457	7	16	M 30	110
400	620	32	550	37	420	514	7	16	M 33	120
500	730	36.5	660	37	520	624	7	20	M 33	130
600	845	42	770	40	620	731	7	20	M 36	150
700	960	46.5	875	43	720	833	8	24	M 39	160
800	1,085	51	990	49	820	942	8	24	M 45	180
900	1,185	55.5	1,090	49	920	1,042	8	28	M 45	180
1,000	1,320	60	1,210	56	1,025	1,154	8	28	M 52	200

PN 40 flanged joints

to EN 1092-2
Bolts, nuts, washers and gaskets
should be obtained from other suppliers.

Hexagon head bolts 甼
to EN ISO 4016

Washers to EN ISO 7091
Rubber gaskets with steel inlay to EN 1514-1

DN	Dimensions [mm]							Bolts		
	Flanges				Gasket					
	¢ D	b_{1}	ø k	$\varnothing d_{1}$	d_{2}	d_{3}	b_{2}	$\begin{aligned} & \text { Num- } \\ & \text { ber } \end{aligned}$	Thread	L
40	150	19	110	19	49	92	5.5	4	M 16	70
50	165	19	125	19	61	107	5.5	4	M16	70
65	185	19	145	19	77	127	5.5	8	M16	70
80	200	19	160	19	89	142	5.5	8	M 16	80
100	235	19	190	23	115	168	8	8	M 20	80
125	270	23.5	220	28	141	194	8	8	M24	90
150	300	26	250	28	169	224	8	8	M 24	100
200	375	30	320	31	220	290	8	12	M 27	110
250	450	34.5	385	34	273	352	8	12	M 30	120
300	515	39.5	450	34	324	417	8	16	M 30	130
350	580	44	510	37	368	474	8	16	M 33	150
400	660	48	585	41	420	546	8	16	M 36	160
500	755	52	670	44	520	628	10	20	M 39	170
600	890	58	795	50	620	747	10	20	M 45	190

4.2 Ductile iron flanged pipes

PN 10, PN 16 and PN 25 double-flanged pipes
PN 10, PN 16 u. PN 25
to EN 545
with integral flanges (type 21) to EN 1092-2

External protection: epoxy Internal protection: epoxy

DN	Dimensions			Masse [kg] ~			
	[mm]		[m]	1 m of pipe without flange	One flange		
	d_{1}	s_{1}	Laying length		PN 10	PN 16	PN 25
80	98	7	0.1-2.0	16.1	2.8	2.8	2.8
100	118	7.2		20.4	3.3	3.3	3.8
125	144	7.5		26.4	4	4	4.7
150	170	7.8		32.4	5	5	6
200	222	8.4		46.1	6.9	6.7	8.7
250	274	9		61.3	9.8	9.4	13
300	326	9.6		78.1	13	12.6	17.7
350	378	10.2	0.2-2.0	96.5	14.7	17.5	25.4
400	429	10.8		116.2	17.2	22.1	33.2
500	532	12		160.6	23.2	37.4	47.2
600	635	13.2		211.3	32.8	57.6	68
700	738	14.4	0.3-2.0	268.5	44.3	57.4	-
800	842	15.6	0.4-2.0	332.1	58.5	76.8	-
900	945	16.8		401.7	69.6	91.4	-
1,000	1,048	18	0.4-3.0	477.7	87.6	127	-

Ductile iron flanged pipes
PN 10, PN 16 and PN 25 double-flanged pipes
to EN 545
with screwed flanges (type 13) to EN 1092-2

External protection: zinc coating plus finishing layer Internal protection: cement mortar lining (CML)

DN	Dimensions				Weight [kg] ~				
	[mm]			$[\mathrm{m}]$ Laying length	1 m of pipe without flange		One flange		
	d_{1}	s_{1}	S_{2}		CML	Cast iron	PN 10	PN 16	PN 25
80	98	6	4	0.7-5.8	2	12.2	3.3	3.3	3.3
100	118	6			2.5	14.9	3.8	3.8	4.6
125	144	6.2			3.1	18.9	4.8	4.8	5.7
150	170	7.8			3.7	28	6	6	8.6
200	222	8.4			4.9	39.8	8.2	8	10.2
250	274	9			6.1	52.8	11.6	11.6	15.1
300	326	11.2			7.3	78.1	15.1	15.1	20.1
350	378	11.9	5	0.7-4.0	12.3	96.5	17.7	20.4	27.9
400	429	12.6			14	116.3	21	25.5	36.4
500	532	14			17.5	160.6	31	47	
600	635	15.4			20.9	211.3	42.7	66.2	

Larger DN's and higher PN's available on enquiry; When ordering, please state: L, Ll, whether to be in the form of a flanged spigot, \varnothing D if different from Table; puddle flanges can also be supplied in sections which can be welded-on on site. Minimum concrete class C20/25. Curing time of 3 days

FFK 22 fittings
$22^{1} 2^{\circ}$ double flanged bends
to EN 545

DN	Dimensions [mm]	Weight [kg] ~			
	L	PN1O	PN16	PN25	PN4O
80	130	9.5			
100	140	11.9		12.9	
125	150	15.3		17.8	20.5
150	160	19.7		21.5	25.5
200	180	29	27.5	32.5	42
250	210	41.5	41	48	65.5
300	255	60	59	69.5	96.5
350	140	58	64	81	128
400	153	67	75.5	98	156.5
500	185	99	127	148	232
600	254	182	227	248	350
700	284	313	339	334	
800	314	428	646	445	-

4.3 Flanged fittings

111° double flanged bends

to manufacturer's standara

DN	Dimensions [mm]	Weight [kg] ~			
	L	PN1O	PN16	PN25	PN40
80	130	9.5			
100	140	11.9		12.9	
125	150	15.3		17.3	20.5
150	160	19		21.5	25.5
200	180	26	25	29.5	39
250	210	41.5	41	48	65.5
300	255	60	59.5	69.5	96.5
350	105	56	61.5	77	135.9
400	113	58	67.5	90	165.3
500	135	85	113	134	232.8
600	174	157	202	223	253.2
700	194	243	269	299	-
800	213	330	366	333	

FFK 30 fittings
30° double flanged bends
to EN 545

DN	Dimensions [mm]	Weight [kg] ~			
	L	PN10	PN16	PN25	PN4O
80	130	9.5			
100	140	11.9		12.9	
125	150	15.3		17.8	20.5
150	160	19.5		19.5	25
200	180	29	27.5	32.5	42
250	210	41.5	40.5	48	65
300	255	59.5	59	69	96
350	165	65	71	88	138
400	183	73	82.5	106	163.5
500	220	109	137	158	256
600	309	212	257	278	284
700	346	360	386	430	-
800	383	493	529	674	

FFK 45 fittings
 $\mathbf{4 5}$ double flanged bends

to EN 545

F fittings
Flanged spigots
nach EN 545

DN	Dimensions [mm]		Weight [kg] ~			
	L	d_{1}	PN10	PN16	PN25	PN40
80	350	98	7.5			
100	360	118	8.5		10.4	
125	370	144	12.4		13.1	14.3
150	380	170	15.6		16.6	17.5
200	400	222	24.6	24	24.5	29
250	420	274	32	31.5	36	45
300	440	326	43.2	42.7	47.7	63.2
350	460	378	52.3	55.3	64.3	85.3
400	480	429	64.3	70.3	81.3	115
500	520	532	93.9	109	121	154
600	560	635	133	159	173	226
700	600	738	179	194	228	-
800	600	842	226	245	294	-
900	600	945	272	295	356	-
1,000	600	1,048	328	369	447	-

Q fittings

90° double flanged bends
to EN 545

DN	Dimensions [mm]	Weight [kg] ~			
	L	PN1O	PN16	PN25	PN40
80	165	9.7			
100	180	12.3		12.3	
125	200	18.0		21.1	22.3
150	220	19.8		21.8	26.3
200	260	31.2	30.2	34.7	45.2
250	350	50	49	57	77
300	400	69.9	68.9	80.4	110.9
350	450	93.1	102.2	146	190
400	500	133.2	146.2	205.5	272.5
500	600	179	209	233	300
600	700	269	322	350	455
700	800	381.5	411.5	481.5	
800	900	527	565.5	664.5	
900	1,000	690	737	858	
1,000	1,100	896	979	1,135	

80	5017	330	155	141515.7			
	80						
100	40^{17}	360	170	18 15.7 19			
	50^{11}		170	17.1		18.1	
	80		175	18.4		19.6	
	100		180	19		20.5	
125	80	400	190			24.3	26.8
	100		195	23.8		25.8	28.3
	125		200	25.2		26.7	30.7
150	80	440	205	28.5		30.5	35
	100		210	29.4		31.9	35.9
	125		215	30.9		33.4	38.9
	150		220	32.2		35.3	41.9
200	80	520	235	42.2	41.7	45.7	56.7
	100		240	43.1	42.6	47.1	57.6
	125^{11}		245	51	51	55	58
	150		250	46	45.5	50.5	63
	200		260	49.5	48.5	55	70.5
250	80^{17}	700	265	72	71	79	99
	100			67.6	66.6	75.1	95.2
	125^{19}		275	92	91	100	121
	$150{ }^{11}$		300	81	80	89	111
	200		325	75.2	74.2	84.2	109.7
	250		350	81	80	91.5	121.5
300	80^{17}	800	290	98	97	108	142
	100		300	93.8	92.8	104.8	135.8
	150^{11}		325	101	100	112	145
	200		350	102.4	101.4	114.4	151.4
	$250{ }^{11}$		400	113.9	112.9	128.9	175.9
	$300^{1 /}$		375	117.4	113	128	168
350	100	850	325	115	121.5	138.5	181.5
	200			120.5	126.5	145.5	193.5
	350		425	138.8	147.8	172.8	236.8
	80^{17}	900	350	154.4	167.4	173	240
	100			158	173.2	174.4	241.4
400	$150{ }^{11}$			144	156	179	249

400	150^{11}	900	350	144	156	179	249
	200			179.5	179.5	201.1	264.3
	300^{11}		450	183	187.3	215	295
	400			182.5	209.5	238.5	340.5
500	80^{17}	1,000	400	215.5	216	263	330
	100			218.5	247	287	331
	$150{ }^{11}$			225.5	255.5	270	344
	200			242.3	273.6	274	344
	300^{11}			259	267	287	373
	400		500	266.9	327.4	337.1	427.7
	500			291.7	298.2	337.3	449.7

600

$$
700
$$

700	400	80	-	468.4	444.5	543.5	
	500^{11}	1,200	600	539.8	532	644	
	600^{11}			541.4	627.8	673	
	700			604	591	695	
800	80^{11}	690	570	407.5	445.5	537.5	-
	100^{17}			398.5	452	539	
	150^{17}		580	438.2	409	543	
	200		585	448.7	455	550	
	300^{11}	910	600	547.6	518	613	
	400		615	556.2	553	655	
	500^{11}	1,350	645	697.6	698	801	
	600			654.4	729	832	
	$700^{1)}$		675	679	731	856	
	800			716	720	927	
900	100^{17}	730	640	445	488	730	-
	200	730	645	432	480	603	
	300^{11}	950	660	544	588	690	
	400	950	675	532.5	585.5	717.5	
	500^{11}	1,500	690	784	842	960	
	600		705	771	846	981	
	900		750	818	890	1.071	
1,000	$150{ }^{17}$			561	640	790	-
	200	770	705	564	643	793	
	300^{11}	990	735	645	724	879	
	400			657	738	899	
	500^{11}	1,650	825	951	1,055	1.225	
	600^{11}			966	1,082	1,243	
	$70{ }^{11}$			989	1,102	1,292	
	800^{11}			1,016	1,123	1,339	
	9001 ${ }^{1,000}$			1,036 1,066	1,148 1,186	1,356 1,413	

[^7]

[^8]
FFR fittings
 Double flanged tapers

to EN 545
DN

FFRe fittings
Eccentric double flanged topers
to manufacturer's standard

DN ${ }_{1}$	dn	Dimensions [mm]	Weight [kg] ~			
		L	PN1O	PN16	PN25	PN4O
50	40	200	7			
65	40	200	8.5			
	50		9			
80	40	200	9.2			
	50		9.7			
	65		10.7			
100	40	200	11.1		11.6	
	50		12.1		12.1	
	65		12.6		12.6	
	80		13.1		13.1	
125	50	200	13.6		14.2	16.1
	65		14.6		15.1	16.4
	80		15.6		16.2	17.5
	100	300	16.5		17.1	18.4
150	50	300	17.9		21.5	23.5
	80		19		23	25
	100		20		24.5	26.5
	125		25.5		25.5	29
200	80	300	24.4	25	27	33.5
	100		24.5	24.5	28	34
	125		25.5	25.5	29	35
	150		29.5	29.5	31.5	38.5
250	100	300	35.5	35.5	39	49
	125		36	36	39.5	50.5
	150		40	40	42.5	51.5
	200		42	42	48	64
300	100	300	40.5	40.5	45	60
	150		42.5	46.1	59	82
	200		53.1	53.1	63	87.5
	250		55	55	66.5	94
350	200	500	82	85	99	122
	250		83	85.5	101	128
	300		108	114	125	162
400	150	500	81	90	102	138
	200	600	85	85	110.5	150.5
	250	500	91	102	123	163
	300		105	104	124	183
	350		117	126	145	200
500	250	500	114.5	127	140.5	186
	300		115	135	153	204
	350		120.5	141	158	207
	400		162	162	194	194
600	300	500	182	193	212	288
	400		196	241	252	345
	500		236	252	262	357

Nfittings

Double flanged 90° duckfoot bends
to EN 545

DN	Dimensions [mm]			Weight [kg] ~			
	L	c	d	PN 10	PN 16	PN 25	PN 40
80	165	110	180	13.2			
100	180	125	200	16.9		17.9	
125	200	140	225	22.1		23.1	26.1
150	220	160	250	28.8		30.8	35.8
200	260	190	300	46.2	45.2	49.7	60.2
250	350	225	350	73.5	72.5	80.5	101
300	400	255	400	103.9	102.9	113.9	144.9
350	450	290	450	136	142	158	201
400	500	320	500	176.4	186.4	209.4	277.4
500	600	385	600	281	311	335	402
600	700	450	700	425	478	506	612

${ }^{1)}$ To manufacturer's standard, flange connection dimensions to EN 1092-2; flanges for higher pressures available on enquiry

Marking of fittings

All fittings produced by member companies of the "Fachgemeinschaft Gussrohrsysteme/European Association for Ductile Iron Pipe Systems (FGR/EADIPS) carry the "FGR" mark indicating that all the guidelines required for the award of the "FGR Quality Mark" have been complied with.

As well as this, all fittings are marked with their nominal sizes and bends are marked with their respective angles.
Flanged fittings have the nominal pressures PN 16, 25 or 40 cast or stamped onto them. No nominal pressure appears on flanged fittings for PN 10 or on any socket fittings.

To identify their material as "ductile cast iron", fittings are marked with three raised dots arranged in a triangle (\therefore) on their outer surface. In special cases, there may be further markings which are specified as needing to be applied.

DN 80 transition flanges
Flanges for PN 10 to PN 40 transitions
to manufacturer's standard

DN	Dimensions [mm]		PN [bar]	Weight [kg] ~
	D	e		
80	200	27	10/40	3.9

5 - COATINGS

Preliminary remarks

In their as-supplied form, ductile iron pipes and fittings have factoryapplied internal and external coatings. The various coatings available for pipes can be selected to suit a wide variety of factors and can be combined almost as desired.

Some of the crucial influencing factors are as follows:

- the medium to be carried
- the corrosiveness of the soil and groundwater
- the grain size of the bedding
- the temperature of the medium
- the ambient temperature
- the installation technique

The structure, operation and fields of use of the various internal and external coatings available for pipes are described in the following Chapter.

For fittings, what has shown itself to be the state of the art internal and external coating is the epoxy coating to EN 14 901. Fittings with this coating can be used both for the supply of drinking water and for the disposal of sewage and other wastewater. Other coatings such as a cement mortar lining, enamelling or bitumen are possible on enquiry.

5.1 External coatings
 Zinc coating with polyurethane finishing layer (PUR Longlife coating)

Structure

A zinc coating with a polyurethane (PUR) finishing layer is available for 5 m laying length pipes of nominal sizes from DN 80 to DN 500 and for all push-in joints. The finishing layer consists of polyurethane.

It complies with Austrian Ö-NORM B 2560 and is available in the following colours:

- blue for drinking water
- black for snow-making systems and turbine pipelines

Other colours are available on enquiry.

The mean thickness of the finishing layer is $120 \mu \mathrm{~m}$. Below the finishing layer there is a zinc coating with a mass of at least $200 \mathrm{~g} / \mathrm{m}^{2}$.

Operation

There are three factors on which the protective action of the zinc coating with a finishing layer is based:

- the electrochemical action of the zinc
- a reduction in any subsequent diffusion of the attacking medium.
caused by the products of reaction of the zinc which form and which are insoluble in water
- the anti-bacterial action of zinc salts

If there is damage to the corrosion protection which extends down to the surface of the cast iron, an electrochemical cell, a so-called macrocell, forms at the damaged point. When metals are arranged in the electrochemical series, zinc is a less noble metal than iron; it has a more negative electrode potential and if it is in conductive contact with iron and an electrolyte is present it goes into solution. In electrochemical terms, the exposed surface of the cast iron thus forms a cathode and the zinc-coated surface of the pipe an anode. Zinc ions migrate to the damaged point and form a layer of "scarring" which stops the corrosion.

Cathodic protective action of the zinc at injuries to the protective layer
When pipes are laid in the ground, over the course of time the layer of zinc changes into a dense, firmly adhering, impermeable and uniformly crystalline layer of insoluble compounds consisting of zinc oxides, hydrates and zinc salts of different compositions. Although the exchange processes between the zinc and the ground are hampered by the porous finishing layer, they are not completely suppressed and in a spatially confined region conditions are created for a slow conversion which encourages salts to crystallise out.
Even though the metallic zinc which was originally present has been converted, this layer of products of the corrosion of the zinc maintains the protective action.

In anaerobic soils in which bacterial corrosion by sulphate-reducing bacteria may occur, zinc provides additional protection as a result of its antibacterial action and its ability to increase the pH at the interface between the cast iron and the soil.

Fields of use

- Under Austrian ÖNORM B 2538, the allowable grain size of the pipe bedding material is limited to 100 mm
- With regard to the corrosiveness of the bedding material, the present external coating can be assumed to be comparable to the zinc coating and reinforced finishing layer under EN 545. Many soils are permitted as pipe bedding materials in this case but the following are exceptions
- soils with a low resistivity of less than 1,000 ohms $\times \mathrm{cm}$ when installation is above the water table or one of less than 1,500 ohms x cm when installation is below the water table
- mixed soils, i.e. soils made up of two or more different types of soil
- soils with a pH of less than 6 and a high base-neutralising capacity
- soils which contain refuse, cinders or slag or which are polluted by wastes or industrial effluents.
Further information on the present subject can be found in Chapter 8.

5.2 The PUR-TOP special finishing layer

The PUR-TOP finishing layer is an enhanced version of the PUR Longlife finishing layer. The PUR finishing layer is increased to a thickness of $400 \mu \mathrm{~m}$ and it also has a polyethylene bandage for protection against impacts wound round it. The thickness of the impact protection bandage is $\geq 0.65 \mathrm{~mm}$.
With regard to the corrosiveness of the bedding material, the PUR TOP coating constitutes a reinforced coating under EN 545. Soils of any desired corrosiveness are thus possible as bedding materials.

Installation instructions

The directions given in Chapter 8 relating to bedding materials and the cutting of pipes should be followed. Special requirement for PUR TOP coatings.
Before pipes with PUR TOP coatings are cut, the polyethylene bandage must be removed by pulling it off for a length of 2 L or 2LS, as the case may be, as shown in the Table below (for collars, allowance must also be made for the dimension for sliding on the collar).

DN	TYTON	
	$\mathrm{L}(\mathrm{mm})$	VRS $^{\oplus}$-T
80	95	$\mathrm{~L}_{\mathrm{s}}(\mathrm{mm})$
100	100	165
125	100	175
150	105	185
200	110	190
250	115	200
300	120	205
350	120	210
400	120	-
500	130	230
		245

Once the pipe joint has been assembled, the region in which the joint is situated should be covered with a shrink-on sleeve.

5.3 External coatings Zinc coating with epoxy coating

Structure

A zinc coating with a finishing layer is available for 6 m laying length pipes of nominal sizes from DN 80 to DN 1000 and for all push-in joints. The finishing layer may consist of epoxy paint or bitumen.

It complies with EN 545 and is available in the following colours:

- blue for drinking water
- green for non-drinking water
- black (bitumen) for snow-making systems and turbine pipelines Other colours are available on enquiry.

The mean thickness of the finishing layer is $70 \mu \mathrm{~m}$. Below the finishing layer there is a zinc coating with a mass of at least $200 \mathrm{~g} / \mathrm{m}^{2}$.

Operation

There are three factors on which the protective action of the zinc coating with a finishing layer is based:

- the electrochemical action of the zinc
- a reduction in any subsequent diffusion of the attacking medium, caused by the products of reaction of the zinc which form and which are insoluble in water
- the anti-bacterial action of zinc salts

If there is damage to the corrosion protection which extends down to the surface of the cast iron, an electrochemical cell, a so-called macrocell, forms at the damaged point. When metals are arranged in the electrochemical series, zinc is a less noble metal than iron; it has a more negative electrode potential and if it is in conductive contact with iron and an electrolyte is present it goes into solution. In electrochemical terms, the exposed surface of the cast iron thus forms a cathode and the zinc-coated surface of the pipe an anode. Zinc ions migrate to the damaged point and form a layer of "scarring" which stops the corrosion.

Cathodic protective action of the zinc at injuries to the protective layer

When pipes are laid in the ground, over the course of time the layer of zinc changes into a dense, firmly adhering, impermeable and uniformly crystalline layer of insoluble compounds consisting of zinc oxides, hydrates and zinc salts of different compositions. Although the exchange processes between the zinc and the ground are hampered by the porous finishing layer, they are not completely suppressed and in a spatially confined region conditions are created for a slow conversion which encourages salts to crystallise out.
Even though the metallic zinc which was originally present has been converted, this layer of products of the corrosion of the zinc maintains the protective action.

In anaerobic soils in which bacterial corrosion by sulphate-reducing bacteria may occur, zinc provides protection as a result of its antibacterial action and its ability to increase the pH at the interface between the cast iron and the soil.

Fields of use

Pipes with a zinc coating are used above all in applications where an exchange of soil is intended. There are two main factors which may dictate such an exchange:

- Under DVGW W 400-2, Anhang G, the allowable grain size of the pipe bedding material is limited to 0 to 32 mm (rounded grains) or O to 16 mm (fragmented grains)
- Many soils are permitted as pipe bedding materials under EN 545 but the following are exceptions
- soils with a low resistivity of less than 1,500 ohms $\times \mathrm{cm}$ when installation is above the water table or one of less than 2,500 ohms $\times \mathrm{cm}$ when installation is below the water table
- mixed soils, i.e. soils made up of two or more different types of soil
- soils with a pH of less than 6 and a high base-neutralising capacity
- soils which contain refuse, cinders or slag or which are polluted by wastes or industrial effluents.

A thicker finishing layer with a local minimum thickness of $100 \mu \mathrm{~m}$ is able to widen the field of use to cover a soil resistivity of 1,000 ohms x cm when installation is above the water table and one of 1,500 ohms x cm when it is below the water table.
Further information on the present subject can be found in Chapter 8.

Installation instructions

The directions given in Chapter 8 relating to bedding materials and the cutting of pipes should be followed.

5.4 External coatings Zinc-aluminium coating with finishing layer (Zinc Plus)

Structure

A zinc-aluminium coating with a finishing layer is available for 6 m laying length pipes of nominal sizes from DN 80 to DN 1,000 and for all push-in joints. The finishing layer consists of blue epoxy paint and complies with EN 545. Other colours are available on enquiry.
The mean thickness of the finishing layer is $70 \mu \mathrm{~m}$. Below the finishing layer there is a zinc-aluminium coating (85% zinc and 15% aluminium) with a mass of at least $400 \mathrm{~g} / \mathrm{m}^{2}$.

Operation

There are three factors on which the protective action of the zincaluminium coating with a finishing layer is based:

- the electrochemical action of the zinc
- a reduction in any subsequent diffusion of the attacking medium. caused by the products of reaction of the zinc which form and which are insoluble in water
- the anti-bacterial action of zinc salts

If there is damage to the corrosion protection which extends down to the surface of the cast iron, an electrochemical cell, a so-called macrocell, forms at the damaged point. When metals are arranged in the electrochemical series, zinc is a less noble metal than iron; it has a more negative electrode potential and if it is in conductive

contact with iron and an electrolyte is present it goes into solution. In electrochemical terms, the exposed surface of the cast iron thus forms a cathode and the zinc-coated surface of the pipe an anode. Zinc ions migrate to the damaged point and form a layer of "scarring" which stops the corrosion.

Cathodic protective action of the zinc at injuries to the protective layer

When pipes are laid in the ground, over the course of time the layer of zinc changes into a dense, firmly adhering, impermeable and uniformly crystalline layer of insoluble compounds consisting of zinc oxides, hydrates and zinc salts of different compositions. Although the exchange processes between the zinc and the ground are hampered by the porous finishing layer, they are not completely suppressed and in a spatially confined region conditions are created for a slow conversion which encourages salts to crystallise out.
Even though the metallic zinc which was originally present has been converted, the layer of products of the corrosion of the zinc maintains the protective action.

To delay the effect of this conversion for as long as possible, and thus to maintain the protective electrochemical action, the zinc has a 15\% proportion of aluminium added to it. This and the increase in the total mass of zinc produces a further rise in the technical operating life which can be expected and an extension of the fields of use. In anaerobic soils in which bacterial corrosion by sulphate-reducing bacteria may occur, zinc provides additional protection as a result of its antibacterial action and its ability to increase the pH at the interface between the cast iron and the soil.

Fields of use

Pipes with a zinc-aluminium coating (Zinc Plus) are used above all in applications where an exchange of soil is intended. Such an exchange is dictated mainly by the allowable grain sizes.

Under DVGW W 400-2, the allowable grain size of the pipe bedding material is limited to 0 to 32 mm (rounded grains) or 0 to 16 mm (fragmented grains).

Few limits are set in respect of the corrosiveness of the pipe bedding material and the only soils which are ruled out under EN 545 are the following:

- acidic peaty soils
- soils which contain refuse, cinders or slag or which are polluted by wastes or industrial effluents
- soils below sea level whose resistivity is less than 500 ohms $\times \mathrm{cm}$.

In soils of these kinds, and also where stray currents occur, it is advisable for pipes with a cement mortar coating to be used.

Further information on the present subject can be found in Chapter 8.

Installation instructions

The directions given in Chapter 8 relating to bedding materials and the cutting of pipes should be followed.

5.5 External coatings Cement mortar coating

Structure

The cement mortar coating (ZMU) is available for 6 m laying length pipes of nominal sizes from DN 80 to DN 1,000 and for all push-in joints. It complies with EN 15 542. The nominal layer thickness is therefore 5 mm . Below the ZMU there is always a zinc coating of a mass of at least $200 \mathrm{~g} / \mathrm{m}^{2}$
An additional primer may be applied between the zinc and the ZMU but this can be dispensed with if the ZMU is of the polymer-modified type. The cement mortar is applied by an extrusion process (winding-on) or a spraying process. The sockets are protected by rubber protective sleeves or shrink-on material
(see Chapter 6, p. 51).

For special conditions of use, such for example as for trenchless installation in non-cohesive soils, we can also supply our ZMU Plus coating. In this case the pipe is sheathed with cement mortar to a depth sufficient to give it an entirely cylindrical external outline.

Operation

The ZMU is highly effective in providing corrosion protection and protects against both chemical and mechanical attack.
The protective action against chemicals is based above all on the porosity and alkalinity of the mortar used, which is based on blast furnace cement. When the mortar is acted on by groundwater or the soil moisture, what is produced, in time, at the surface of the ductile iron pipe is a $\mathrm{pH}>10$, which is a reliable means of stopping corrosion from occurring.
In the unlikely event of the ZMU being damaged mechanically, the corrosion protection is maintained by the zinc coating situated below the ZMU.

In addition to this, the allowable mechanical loads are laid down by stipulations relating to them in EN 15542 . Standardised figures are given for, amongst other things, strength of adhesion and impact
resistance. The consequence is that the ZMU has an outstanding ability to carry mechanical loads.

Fields of use

Because of the excellent mechanical and chemical protective properties of the ZMU, pipes with an external coating of this kind can be used almost anywhere. Some of the significant fields of use are:

- corrosive/contaminated soils Under Annex D of EN 545, ductile iron pipes with a fibrereinforced cement mortar coating to EN 15542 can be installed in soils of any desired corrosiveness.
- coarse grained pipe bedding material

DVGW Arbeitsblatt W 400-2 regulates the allowable grain sizes of the pipe bedding material. Under Anhang G to this Arbeitsb/att, a maximum grain size of 100 mm , where the grains are of a rounded or fragmented form, is allowable for pipes with a cement mortar coating.

- trenchless installation techniques

The trenchless installation techniques for which ductile iron pipes are relevant are regulated in DVGW Arbeitsblätter GW 320-1 to GW 324. Under these documents, pipes with a cement mortar coating are approved for all such techniques.

- stray currents

The latest investigations indicate that ductile iron pipes with a cement mortar coating should be used in areas subject to stray currents. In this way, by installing joints which are not electrically conductive, stray currents can be stopped from having an adverse effect on the pipeline.

6 - ACCESSORIES

Laying tools and other accessories for pipes and fittings with

TYTON ${ }^{\oplus}$, BRS ${ }^{\oplus}$ or VRS $^{\oplus}$-T push-in joints

The following laying tools and other accessories are needed for laying and assembling pipes and fittings:
Note: a chain-hoist traction assembly must be used for assembling BRS® push-in joints of DN 350 size and above!

Laying tools

DN	Pipes	Fittings	
80		MMA. MMB.	Muffenbogen:
100	Lever	MMR und	Montagegerät
125		EU: Hebel	(z.B. Typ 1)
80	Laying tool		
100			
125	Type 1	As for pipes	
150			
200	Type 2	As for pipes. plus yoke and	
250		chain of Type 1 tool	
300			
$350{ }^{1)}$	Type 3	As for pipes	
$400^{1)}$			
500			
600			
700	Chain-hoist traction	As for pipes	
800			
900			
1,000			

${ }^{1)}$ Use chain-hoist traction assemblies for BRS ${ }^{\oplus}$ push-in joints of DN 350 size and above.

Lever for sizes up to and including DN 125

Laying tools for nominal sizes up to and including DN 400

DN	Consisting of		Weight [kg] ~
	Type 1		
80			14.0
100			15.0
125			15.5
150	1 mounting clamp		17.1
200	1 yoke	2 mounting clamps	18.1
250	2 levers	2 levers	20.5
300			23.5
$350^{1)}$			25.0
$400^{1)}$			

${ }^{1)}$ Use chain-hoist traction assemblies for BRS ${ }^{\circledR}$ push-in joints of DN 350 size and above.

Laying tool type 1 for DN 80 to DN 400 size pipes and fittings with a zinc or zinc-aluminium coating and a finishing layer (silver identifying marking).
Laying tool type 2 for DN 80 to DN 400 size pipes with a cement mortar coating (blue identifying marking).
Laying tool type $\mathbf{3}$ for DN 80 to DN 400 size pipes and fittings with thermal insulation (WKG) (red identifying marking).

Chain-hoist traction assemblies for nominal sizes from DN 350 to DN 1000

DN	Consisting of	Weight [kg] ~
$350{ }^{1)}$	$2 \times 30 \mathrm{kN}$ lever chain-hoists* 1 cable yoke 1 traction cable 1 mounting clamp	92
400 ${ }^{1)}$		97
500		101
600		105
700		108
800		112
900	2×50 kN lever chain-hoists* 1 cable yoke 1 traction cable 1 mounting clamp	115
1,000		119

- Obtainable from specialist suppliers
${ }^{1)}$ Use chain-hoist traction assemblies for BRS® push-in joints of DN 350 size and above

Other accessories

Dusting brush, cotton waste, wire brush, spatula, scraper (e.g. bent screwdriver), paint brush, lubricant, depth gauge.

For cutting of pipes

Use a disc cutter or grinder fitted with a cutting disc for stone, e.g. the C24RT Spezial type. For bevelling the spigot end use a coarse-grain grinding disc.

Laying tools and other accessories for pipes and fittings with BLS ${ }^{\oplus} /$ VRS $^{\oplus}-$ T push-in joints
As well as the usual laying tools and other accessories, the following may also be needed when pipes and fittings with VRS®-T push-in joints are being laid.

DN	Accessory	Used for
80 bis 500	Torque wrench able to apply a torque of at least 50 kN	Tightening the bolts of a clam- ping ring
80 bis 1000	Copper guide of the appropriate nominal size to guide the welded bead	Re-application of welded bead (e.g. to cut pipes)

Laying tools and other accessories for fittings with screwed socket and bolted gland joints
The following laying tools and other accessories are needed for assembling fittings with screwed socket and bolted gland joints.

Laying tools

Other accessories:

Dusting brush, wire brush, spatula, chalk, hammer, paint brush, lubricant.

Laying tools and other accessories for fittings with screwed socket joints

Hook spanner
DN
Weight [kg] ~
DN

One-piece shrink-on sleeves for pipes with a cement mortar coating (ZMU) and TYTON ${ }^{\ominus}$, BRS ${ }^{\circledR}$ or VRS ${ }^{\circledR}$-T push-in joints DN 80 to DN 500

	Product designation				Dimensions [mm]	
DN	Product	Loading class	Width L	minal size (DN)	L	¢D/ \varnothing (1)
80	MPSMPMO	C30	300	DN Xxx	300	200/80
100					300	235/100
125					300	280/135
150					300	280/135
200					300	340/205
250			300	DN XXX	300	405/243
300					300	460/275
350	PMO				300	515/314
400					300	565/345
500					300	680/414

${ }^{1} \varnothing D / \varnothing d=\sim$ in unshrunk state/smallest shrunken size; dimensions and degrees of shrinkage may vary slightly depending on the product; tape material should be used on joints of DN 600 size and above

Rubber sleeves for protecting cement mortar, for pipes with a cement mortar coating (ZMU) and TYTON ${ }^{\ominus}$, BRS ${ }^{\circledR}$ or VRS ${ }^{\text {- }}$ T push-in joints

These are combination sleeves which will fit TYTON®, BRS ${ }^{\oplus}$ and VRS $^{\circledR}-\mathrm{T}$ push-in joints.

DN	Dimensions [mm]
80	155
100	155
125	160
150	165
200	170
250	180
300	200
350	135
400	210
500	210
600	265
700	265
800	265
900	265
1,000	265

Pre-cut shrink-on sleeves of tape material with a sealing strip for pipes with a cement mortar coating (ZMU) DN 600 to DN 1000

Width $L=300 \mathrm{~mm}$ (12 inch) for TYTON ${ }^{\oplus} /$ BRS $^{\ominus}$
Width $L=450 \mathrm{~mm}(17$ inch $)$ for BLS ${ }^{\text {® }}$

DN	Product	Product Loading class	designation Width L	Nominal size	$\frac{\begin{array}{c} \text { Dimensions } \\ {[\mathrm{mm}]} \end{array}}{\frac{\mathrm{Z} \mathrm{~L}^{1)}}{}}$	
600	MEPS	C30	300 or 450	DN XXX	2.500	
700	incl. WPCP IV 8×12 or 8×17				2.950	
800			3.260			
900	WLOX	C30		300 or 450	DN XXX	3.600
1,000		-300 or 450	3.960			

[^9]
7 - SPECIAL PRODUCTS

WKG pipes with TYTON ${ }^{\ominus}$ push-in joints
to DIN 28 603, or, up to DN 600, BRS® restrained push-in joints Folded spiral-seam outer tubing (FL) HDPE outer sleeve (EL)

DN	Dimensions [mm]				Weight [kg] ~ ${ }^{1)}$	
	$\varnothing \mathrm{D}_{0}$	$\varnothing \mathrm{d}_{1}$	L	$S_{\text {D }}$	FL-Rohr*	EL-Rohr
80	180	98	94	41.0	112	108
100	200	118	98	41.0	135	129
125	225	144	101	40.5	168	159
150	250	170	104	40.0	207	195
200	315	222	110	46.5	276	261
250	400	274	115	63.0	369	366
300	450	326	120	62.0	453	456
400	560	429	120	65.5	683	696
500	710	532	130	89.0	966	983
600	800	635	130	82.5	1,218	1,266
700	900	738	172	81.0	1,548	1,614
800	1,000	842	184	79.0	1,896	1,974

${ }^{1}$) Total weight; other nominal sizes, insulating layers of other thicknesses and trace heating are available on enquiry. "Where pipes are intended for use in above-ground pipelines it is essential to consult our Applications Engineering Division.

WKG pipes with VRS ${ }^{\circ}$-T push-in joints
Folded spiral-seam outer tubing (FL)
HDPE outer sleeve (EL)

DN	Dimensions [mm]					Weight [kg] ~1)	
	$\varnothing \mathrm{D}_{\mathrm{a}}$	$\varnothing \mathrm{d}_{1}$	L	s_{D}	FL-Rohr	EL-Rohr	
80	180	98	207	41.0	121	110	
100	225	118	215	53.5	149	140	
125	250	144	223	53.0	180	171	
150	280	170	230	55.0	212	204	
200	355	222	240	66.5	300	288	
250	400	274	265	63.0	383	378	
300	450	326	270	62.0	476	471	
400	560	429	290	65.5	705	715	
500	710	532	300	89.0	986	1,003	
600	800	635	280	82.5	1,266	1,314	
700	900	738	302	81.0	1,632	1,698	
800	1,000	842	314	79.0	2,004	2,082	

${ }^{1)}$ Total weight; other nominal sizes, insulating layers of other thicknesses and trace heating are available on enquiry.
Dimension and weights of pipes of 5 m laying length are
available on enquiry

WKG socket bends (MMK) with TYTON ${ }^{\oplus}$ push-in joints or, up to DN 600, BRS ${ }^{\text {® }}$ restrained push-in joints
Folded spiral-seam outer tubing (FL)/HDPE outer sleeve (EL)

DN	\emptyset Da	Dimensions L_{ω} [mm]				
		$\begin{gathered} \hline \text { MMK } \\ 11^{\circ} \end{gathered}$	MMK 22°	$\begin{aligned} & \text { MMK } \\ & 30^{\circ} \end{aligned}$	$\begin{aligned} & \hline \text { MMK } \\ & 45^{\circ} \end{aligned}$	MMQ (90°)
80	180	30	40	45	55	100
100	200	30	40	50	65	120
125	225	35	50	55	75	145
150	250	35	55	65	85	170
200	315	40	65	80	110	220
250	400	50	75	95	130	270
300	450	55	85	110	150	320
400	560	65	110	140	195	430
500	710	75	130	170	240	550
600	800	85	150	200	285	645

Other nominal sizes, insulating layers of other thicknesses and trace heating are available on enquiry. Other types of fitting have to be insulated by the installer. *Where BRS® push-in joints are intended for use in above-ground pipelines it is essential to consult our Applications Engineering
Division. Division.

WKG socket bends (MMK) with VRS ${ }^{\text {® }}$-T push-in joints
Folded spiral-seam outer tubing (FL)/HDPE outer sleeve (EL)

DN	\emptyset Da	Dimensions L_{μ} [mm]				
		$\begin{gathered} \text { MMK } \\ 11^{\circ} \end{gathered}$	$\begin{aligned} & \text { MMK } \\ & 22^{\circ} \end{aligned}$	$\begin{aligned} & \text { MMK } \\ & 30^{\circ} \end{aligned}$	$\begin{gathered} \text { MMK } \\ 45^{\circ} \end{gathered}$	MMQ (90°)
80	180	30	40	45	55	100
100	225	30	40	50	65	120
125	250	35	50	55	75	145
150	280	35	55	65	85	170
200	355	40	65	80	110	220
250	400	50	75	95	130	270
300	450	55	85	110	150	320
400	560	65	110	140	195	430
500	710	75	130	170	240	-
600	800	85	150	200	285	-

Other nominal sizes, insulating layers of other thicknesses and trace heating are available on enquiry. Other types of fitting have to be insulated by the installer.

Example: Installation of a bridge pipeline using WKG FL system and push-in joints

One sliding hanger per pipe for support
distance from joint approx. 0.5 m
Sliding hanger, e.g. made by Huckenbeck (supplied by client)

Heat-shrink end cap at the transition to the non-thermally insulated pipeline

Hangers for above-ground pipelines

Width B of clamp when hangers are spaced 6 m apart

DN	$\mathbf{8 0 - 1 2 5}$	$150-200$	$250-300$	$400-500$	$600-700$	800
B	100	150	200	300	400	450

Sliding hangers with anti-lift-off guards. For fastening with anchor bolts or to brackets or bridges. Suitable for WKG pipes in line with structural requirements (e.g. made by Huckenbeck, supplied by the client)

Heat loss times for standing water in fully filled pipes (initial water temperature $8^{\circ} \mathrm{C}$)

Above-ground pipelines (FL) with folded spiral-seam outer tubing and TYTON ${ }^{\circledR}$ push-in joints

DN of medium pipe	Thickness of insulation s_{D} [mm]	Temperature of ambient air $-20^{\circ} \mathrm{C}$		Temperature of ambient air$-30^{\circ} \mathrm{C}$	
		Cooling to $0^{\circ} \mathrm{C}$ [h]	Cooling to 25% ice [h]	Cooling to $0^{\circ} \mathrm{C}$ [h]	Cooling to 25% ice [h]
80	41.0	10	21	7	14
100	41.0	12	28	9	19
125	40.5	16	39	11	26
150	40.0	20	49	14	32
200	46.5	31	80	22	53
250	63.0	51	135	36	90
300	62.0	62	167	44	111
400	65.5	89	241	63	161
500	89.0	150	410	106	273
600	82.5	172	472	120	315
700	81.0	199	> 500	140	366
800	79.0	224	> 500	157	415

For other temperatures of ambient air, please consult our Applications Engineering Division.

Heat loss times for standing water in fully filled pipes (initial water temperature $\mathbf{8}^{\circ} \mathrm{C}$)
Buried pipelines (EL) with HDPE outer sleeves and TYTON® push-in joints

DN of medium pipe	Thickness of insulation S_{D} [mm]	Max. depth of frost penetration 1.4 m			
		Height of cover 0.3 m		Height of cover 0.5 m	
		Cooling to $0^{\circ} \mathrm{C}$ [h]	Cooling to 25% ice [h]	Cooling to $0^{\circ} \mathrm{C}$ [h]	Cooling to 25\% ice [h]
80	41.0	24	68	32	102
100	41.0	31	94	41	142
125	40.5	40	130	53	196
150	40.0	49	169	64	254
200	46.5	76	292	100	440
250	63.0	125	> 500	164	> 500
300	62.0	151		199	
400	65.5	214		282	
500	89.0	447		> 500	
600	82.5	> 500			
700	81.0				
800	79.0				

For other depths of frost penetration and heights of cover, please consult our Applications Engineering Division.

7.2 Installation instructions for ductile iron pipes with WKG thermal insulation

Applicability

These installation instructions apply to thermally insulated (WKG) ductile iron pipes and fittings. For the assembly of the joints of pipes or fittings, see the particular installation instructions applicable to ductile iron pressure pipes with

- TYTON ${ }^{\circledR}$ push-in joints,
- restrained $V R S^{\circledR}-T$ push-in joints,
- restrained BRS^{\circledR} push-in joints

Special notes on transport and storage

When pipes are to be loaded or unloaded or moved about on site, and when they are being installed, slings should be used.
Pipes must only be placed down on at least 10 cm wide lengths of squared timber or other suitable materials spaced about 1.5 m away from the ends of the pipes.

They are not to be:

- put down with a jolt,
- thrown off the vehicle,
- dragged or rolled,
- stacked

Laying tools and other accessories

- TYTON ${ }^{\circledR}$ assembly kit (bent screwdriver and depth gauge),
- V 303 laying tool for DN 80 to DN 400 pipes1),
- chain-hoist or cable-hoist laying tool for all other nominal sizes.

Plus. in the case of pipes with restrained VRS ${ }^{\circledR}-\mathbf{T}$ push-in joints

- copper guide for welded bead
- clamping strap (DN 600 and above); see p. 18

1) For BRS ${ }^{\circledR}$ push-in joints on pipes of DN 350 size and above, use a chain-hoist laying tool.

FL system for above-ground pipelines (folded spiral-seam outer

 tubing)First the joint is assembled or assembled and locked, as the case may be, and then, depending on the type of joint (TYTON ${ }^{\circledR}, \mathrm{BRS}^{\circledR}$ * or $V R S^{\circledR}-\mathrm{T}$), one or more rings of soft polyethylene are inserted in the gap that is left between the spigot end and the end-face of the socket.
Finally, the joint is sealed off with a sheet-metal sleeve.

For this purpose, the installer inserts elastic sealing rings (supplied) in the beads formed on the sheet-metal sleeve and fixes the sleeve in position over the joint, in a centralised position, with self-tapping screws.

EL system for buried pipelines (outer sleeve of HDPE)

The gap is first insulated as in the case of the FL system.

The joint is then sealed off with heat-shrinkable material (a heatshrinkable bandage).
One-piece sleeves have to be slid onto the barrels of the pipes before the joint is assembled.
Clean the surface area which is going to be covered of any grease dirt and loose particles. Heat this area to about $60^{\circ} \mathrm{C}$ with a propane gas flame set to a soft setting. Peel the backing film protecting the adhesive away from the bandage for a distance of about 150 mm .

* Our applications Engineering Division must be consulted when BRS ${ }^{\circledR}$ or TYTON ${ }^{\circledR}$ push-in joints are going to be used in aboveground pipelines.

Fix the free end of the bandage over the joint in a centralised position and at right angles to the plane of the joint and wrap the bandage loosely around the outer sleeve while at the same time peeling off the rest of the protective backing film. Overlap the bandage by at least 80 mm in an easily accessible area at the top of the pipeline.

At low ambient temperatures, it is advisable for the inner side of the overlapping part of the bandage and the inner side of the sealing strip to be heated briefly and pressed firmly against the pipes.

From the outside, heat the sealing strip evenly with a soft. constantly moving flame until the texture of the glass-fibre fabric can be seen. While wearing gloves, press the sealing strip firmly against the pipes by hand.
Shrink on the bandage in the circumferential direction using a soft, evenly moved, flame

The shrinking-on has been properly carried out if

- the whole of the bandage has been shrunk on,
- it rests down flat, without any cold spots or air bubbles, and the sealing adhesive has been pressed out at both ends,
- the overlap on the outer tube is at least 50 mm .

The transition from a WKG thermally insulated pipe to ductile iron pipes with no thermal insulation is made by means of a heatshrinkable end cap. With the appropriate changes, this is fitted in the same way as the shrink-on bandages.

Cutting of pipes

Ensure that the pipes are suitable for cutting (see p. 82).
Cuttable pipes are identified by a continuous longitudinal line (adhesive tape) on the outer tubing or outer sleeve and by the white stamped letters "SR" (Schnittrohr = cuttable pipe) on the end-face of the socket.
Before the medium pipe is cut to the desired length, the outer tubing or outer sleeve and the polyurethane foam have to be removed in the region of the future spigot end.
The length required for the spigot end must be copied from the original pipe or taken from the Tables on p. 54.
When collars (EU and U fittings) having screwed socket joints or bolted gland joints are being used, allowance must be made at the
polyurethane foam and the outer tubing or outer sleeve for the larger amount of clear space required.
As dictated by the type of joint, the spigot ends should be finished as directed in the corresponding installation instructions.

Support for the FL system

Ensure that above-ground pipelines have supports, i.e. pipe hangers, of the minimum widths (see p. 55).

Underground installation of EL system

Bedding as per DVGW Arbeitsblatt W 400-2 or EN 805 should be provided for the pipes
In the region of surfaces carrying traffic, the filling of pipeline trenches should follow the Merkblatt für das Verfüllen von Leitungsgräben (issued by the Forschungsgesellschaft für das Straßen- und Verkehrswesen of Cologne). When there are small heights of cover (< 0.5 m), load distributing slabs should be used above the pipeline zone.
Our Applications Engineering Division is at your service to answer any other questions you may have!

Trace heating

When WKG pipes with trace heating are being used, make sure that the heating cable is situated at the bottom of the pipes

7.3 Coating of fittings (internal and external)

Structure

In a similar way to what is happening with valves, the powder coating of fittings with epoxy powder is becoming an increasingly important practice. Under EN 545, fittings coated in this way are suitable for use in soils of all classes of corrosiveness.

For this purpose, the fittings are first subjected to surface treatment by abrasive blasting (to give a standard of cleanliness of Sa 2.5).
They are then heated to a temperature of approx. $200^{\circ} \mathrm{C}$ and are dipped into a fluidised bed of epoxy powder or are electrostatically coated by the use of a spray gun. Pore-free layers of a thickness of more than $250 \mu \mathrm{~m}$ are obtained when this is done. If the type of system being used is suitable, the coating process can be automated. When they have cooled, the fittings have their coatings made good at the points of suspension and are tested and packed.
The coating of our fittings meets the requirements of EN 14910 and those of the GSK, the Quality Association for the Heavy Duty Corrosion Protection of Powder Coated Valves and Fittings.

RAL GÜTEZEICHEN SCHWERER KORROSIONSSCHUTZ
VON ARMATUREN UND FORMSTUUCKEN

Operation

The action of the epoxy coating in protecting against corrosion is based on its absolutely pore-free nature, which keeps all corrosive factors away from the cast iron. Provided the coating is intact, there is a guarantee of protection. Any injuries to the coating should be avoided or should be repaired as quickly as possible.

Fields of use

Ductile iron fittings with an epoxy finishing layer to EN 14901 can be used for transporting drinking water, non-drinking water, surface runoff, raw water, sewage and other wastewater. Under EN 545 they can be used in soils of any desired corrosiveness. The grain size of the bedding material should not exceed 0 to 32 mm (rounded grains) of O to 16 mm (fragmented grains).

Installation instructions

It is essential to avoid any damage to the internal and external coatings. Should any damage nevertheless occur, it must be repaired as quickly as possible. For this purpose, any loose parts of the coating must be removed and the damaged point repainted with a suitable epoxy paint. The point which has been repaired must be allowed to cure before the repaired fitting is re-installed.

7.4 External coatings Thermally insulated ductile iron pipes and fittings (WKG)

Structure of the WKG pipe system

The WKG pipe system consists of ductile iron pipes and socket bends (MMK, MMO) to EN 545 (water) or EN 598 (sewerage) with TYTON ${ }^{\text {® }}$ push-in joints to DIN 28603 which may be restrained if desired.

The pipes are enclosed in thermal insulation formed by a CFC-free rigid polyurethane (PUR) foam with an average density of $80 \mathrm{~kg} /$ m^{3}. This rigid foam is protected from the effects of the weather in one of two ways: for above-ground pipelines (FL), by folded spiralseam outer tubing of galvanized steel to EN 1506 or, as an option, of stainless steel, or for buried pipelines (EL) with a small height of cover which are thus at risk of freezing, by an outer sleeve of high-density polyethylene (HDPE) to EN 253.

The gap in the area of the push-in joint is filled with a ring of soft polyethylene and is covered with a sheet-metal sleeve (in the case of the FL system) or with a shrink-on polyethylene bandage (in the case of the EL system).

Operation

The insulation slows down the heat loss from the pipeline and hence from the drinking water it contains. In this way, even when the water stands still for quite long periods in the pipeline, it is possible for such periods to be waited out without the pipeline freezing. The exact periods depend on a variety of factors such as the ambient temperature, the temperature of the water, the thickness of the insulating layer and special local factors. The tables on p. 55 provide an overview of possible heat loss times.
If these times are not long enough, it is possible for a trace heating system to be incorporated. This system consists of a self-limiting heating cable which is bonded to the pipe carrying the medium and which is switched on at the desired temperature by means of a thermostat. The number and heating capacity of the cables have to be matched to the particular circumstances.

Fields of use

WKG pipes and fittings can be used anywhere where the pipeline can be expected to freeze. Some typical applications are the following:

- Bridge pipelines and pipelines laid above ground Positive locking joint systems (VRS ${ }^{\circledR}$ - T joints) should always be used in this case. The outer covering should be galvanized steel or stainless steel.
- Buried pipelines with small heights of cover A polyethylene outer sleeve should be used in this case. The grain size of the bedding material should not exceed 0 to 40 mm (rounded grains) or 0 to 11 mm (fragmented material). There is no limit to the corrosiveness of the bedding material. All the types of joint can be used, as dictated by the particular conditions.

8 - PLANNING, TRANSPORT AND INSTALLATION

8.1 Transport and storage

By carrying out comprehensive checks on all pipes and fittings during and after manufacture, including tests of their strength and leak tightness, we ensure that they are all in perfect condition when they leave us.

Provided our products are carefully handled during transport, storage and installation, the drinking water pipelines for which they are used will provide many years of trouble-free service. We therefore recommend that you only allow pipes and fittings to be unloaded and installed under the supervision of properly trained personnel.

Unloading and storage of pipes and pipe bundles

Pipes of up to DN 350 nominal size are supplied bundled. Above this size they are supplied as individual pipes. The exact number of pipes per bundle is shown in the table below. The weights of the pipes can, if required, be found from the pages dealing with the individual pipes.

DN	pipes per bundle							
	80	100	125	150	200	250	300	350
6 m-pipes	15	15	10	6	6	4	4	4
5 m -pipes	15	15	12	8	6	4	4	

When pipes or bundles of pipes are to be loaded or unloaded by crane, slings should be used. If individual pipes are unloaded with crane hooks, this must be done with wide, padded hooks fitted at the top of the ends of the pipe as otherwise there is a risk of the pipe and its coating or lining being damaged. Particularly with large pipes, an insert shoe matched to the shape of the pipe must be placed between the hook and the pipe.
As an alternative to loading and unloading by crane, suitable fork-lift trucks may also be used. In this case, particular attention must be paid to the following points:

- The pipes must not be able to tilt off the forks sideways (the forks should be at a width of at least 3 m).
- The pipes must not be able to roll off the forks.
- The forks must be adequately padded to prevent them from damaging the pipe.

During the loading or unloading operation, no-one must stand below the pipe or pipe bundle or on it or in the danger area around the crane.
If pipes are to be moved around by hand, the caps fitted into the ends must first be removed temporarily.

Pipes must only be placed down or stacked on lengths of squared timber or other suitable materials.

They are not to be:

- put down with a jolt,
- thrown off the vehicle,
- dragged, or to be rolled for any great distance.

They are to be

- secured against rolling and slipping,
- stored on level ground able to take their weight.

If ductile iron drinking water pipes are stored in stacks, they must rest on lengths of squared timber at least 10 cm wide. spaced approx. 1.5 m in from the ends of the pipes.

Maximum allowable heights of stack

DN	Layers
$\mathbf{8 0 - 1 5 0}$	15
$200-300$	10
$350-600$	4
$\mathbf{7 0 0 - 1 , 0 0 0}$	2

To prevent accidents, you should avoid building any stacks higher than 3 m . Thermally insulated ductile iron pipes (WKG pipes) must not be stacked!

Unstrapping bundles of pipes

Steel or plastic straps are used to bundle our pipes. The straps should only be cut with suitable tools such as tin snips or side cutters. Using cold chisels, crowbars, pickaxes or the like may cause damage to the external coating of the pipes and also means a greater risk of accidents. Before the straps are cut, make sure that

- the bundle of pipes is standing on non-sloping ground which is as level as possible and which is able to carry the weight of the bundle,
- the pipes are secured against rolling and slipping,
- no-one is standing beside the bundle of pipes or on top of it.

Laying out the pipes on the installation site

If the pipes are laid out beside the pipe trench before they are installed, they should be stored on lengths of squared timber as described above and should be secured against slipping and rolling.
The caps fitted to seal off the ends of drinking water pipes should not be removed at this stage. They should only be removed just before the pipes are installed

Storage of gaskets

To ensure that the pipeline will operate reliably, it is essential that the gaskets fitted are only ones which comply with the relevant quality specifications and are supplied with the pipes by the manufacturer. If other gaskets are used this may invalidate any claims under guarantee.

Gaskets should be stored in a cool, dry place without being in any way deformed. They should be protected from direct sunlight. Care must be taken to ensure that they are not damaged and do not get dirty

At temperatures of below $0^{\circ} \mathrm{C}$, the hardness of the gaskets increases to some degree. To make fitting easier, gaskets should therefore be stored at a temperature of more than $10^{\circ} \mathrm{C}$ when the outside temperature is below $0^{\circ} \mathrm{C}$.
Gaskets should not be removed from the store until just before they are going to be fitted and should be checked for any fouling or damage at this time.

8.2 Pipeline trenches and bedding

Pipeline trenches should be set out and dug in accordance with current technical codes. Codes to be observed include:
EN 805, EN 1610, DIN 18 300, DIN 4124, DIN 50929 Part 3, ONORM B 2538, DIN 30375 Part 2, DVGW Arbeitsblatt W 400-2 or GW 9, ATV DVGW Arbeitsblatt A 139 and the Merkblatt on the filling of pipeline trenches

Installation

Pipes and fittings should be installed in accordance with our installation instructions. The external coatings of pipes and the bedding material used for them should be selected in accordance with DIN 30675 Part 2.

Pipe coating	Coating recommended for joints	Anode backfill	Fields of use in the form of soil classes
Zinc coating with finishing layer, to EN 545	None	No	I, II
		Yes	I, II, III ${ }^{\text {2) }}$
Zinc-aluminium coating with finishing layer, to EN 545	None	No	I, II, III ${ }^{\text {2) }}$
Cement mortar coating to EN 15542	Rubber sleeves or heat-shrink material, or $\mathrm{B}-50 \mathrm{M}^{1)}$ or $\mathrm{C}-50 \mathrm{M}^{1)}$ coating to DIN $30672^{1)}$	No	I, II, III

${ }^{\text {1) }}$ A B-50M or C-30M coating to DIN 30672 may be used for joints at sustained operating temperatures of $T 30^{\circ} \mathrm{C}$.
2) Not suitable when there is constant exposure to eluates of $\mathrm{pH}<6$ and in peaty, boggy, muddy and marshy soils. The directions given in section 4.1 of DIN 30675 Part 2 must be followed

Classification of soils into main groups under DIN 50 929 Part 3		
Evaluation number	Soil class	Aggressiveness of soil
>0	I a	Not aggressive
-1 bis -4	I b	Of low aggressiveness
-5 bis -10	II	Aggressive
<-10	III	Highly aggressive

Not only the aggressiveness of the soil but also its grain size has a part to play in the selection of the external coating for pipes. DVGW Arbeitsblatt W 400-2 provides an overview of the allowable grain sizes.

| Pipe material | Coating | Grain size of rounded
 material | Grain size of fragmented
 material |
| :--- | :--- | :--- | :--- | :--- |
| Ductile iron
 pipes | Zinc/bitumen
 Zinc/epoxy
 Zinc-aluminium/epoxy
 Zinc/polyurethane | $0-32 \mathrm{~mm}$
 Individual grains
 up to a max. of 63 mm | $0-16 \mathrm{~mm}$
 Individual grains
 up to a max. of 32 mm |
| Ductile iron
 pipes | Cement mortar | $0-63 \mathrm{~mm}$
 Individual grains
 up to a max. of 100 mm | $0-63 \mathrm{~mm}$
 Individual grains
 up to a max. of 100 mm |

*According to ÖNORM B2538 the designer has the possibility to increase the maximum grain size up to 100 mm for ductile cast iron pipes coated with PUR (polyurethane finishing) or PUR-TOP (polyurethane finishing plus PE-tape). Essential condition therefore is no compression of the backfill area and settlements which maybe occur on top are acceptable (f.e. forest soil, agricultural areas....).

Pressure testing

The execution of pressure tests on pressure pipelines is governed by EN 805 or DVGW Arbeitsb/att W 400-2. During pressure testing, all work on the pipelines being tested must be stopped
Particularly in the case of pressure pipelines, all personnel must remain at an adequate safe distance from the pipeline.

8.3 Calculating vertical offsets when using flanged fittings

Formulas

$L_{H}=H / \tan \alpha$
$L_{S}=H / \sin \alpha$
$L_{\text {FF }}=L_{S}-2 \cdot L$
$L_{\text {Ges }}=L_{H}+2 \cdot L$
$H=$ Vertical offset from pipe axis to pipe axis
$L=$ Centre-to-end length of the double flanged bend

$\alpha=$ Angle of the double flanged bend

How long does the double flanged pipe have to be when existing double flanged bends are being used and the vertical offset is known?

1. Find the value " L_{s} " from Table 2 for the known vertical offset and the angle $\boldsymbol{\alpha}$ of the bend.
2. Find the centre-to-end length "L" of the bend from Table 1 or our Drinking Water Catalogue.
3. To find the length " $L_{F F}$ " of the double flanged pipe, deduct twice " L " from " L_{s} ".

How large is the vertical offset " H^{\prime}

 when an existing double flanged pipe and existing double flanged bends are being used?1. Measure the length " $L_{F F}$ " of the double flanged pipe.
2. Find the centre-to-end length "L" of the bend from Table 1 or our Drinking Water Catalogue.
3. Calculate " L_{S} ": $L_{S}=L_{F F}+2 \cdot L$.
4.Find the $\sin \alpha$ of the bends which are being used from Table 2.
4. Calculate the vertical offset " H " given by the above as follows: $H=L_{s} \cdot \sin \alpha$.

How long is the distance " $\mathrm{L}_{\text {gEs }}$ " when the vertical offset " H " and the angle of the double flanged bends are known?

1. From the known vertical offset and the angle α of the double flanged bend. find the value " L_{H} " from Table 3.
2. Find the centre-to-end length " L " of the bend from Table 1 or our Drinking Water Catalogue.
3. Calculate " $L_{\text {GES }}$ " as follows: $L_{\text {GES }}=L_{H}+2$ - L.

Worked example:

FFK 30°. DN $200, \mathrm{H}=70 \mathrm{~cm}$

140 cm
18.0 cm
$L_{F F}=140 \mathrm{~cm}-2 \cdot 18 \mathrm{~cm}=104 \mathrm{~cm}$

Worked example:

FFK 30°, DN 200, $L_{\text {FF }}=104 \mathrm{~cm}$

104 cm
18.0 cm
$L_{s}=104 \mathrm{~cm}+2 \cdot 18 \mathrm{~cm}=140 \mathrm{~cm}$ 0.5 cm
$H=140 \mathrm{~cm} \cdot 0.5=70 \mathrm{~cm}$

Worked example:

FFK 30. DN 200. $\mathrm{H}=70 \mathrm{~cm}$
121.2 cm
18.0 cm

LGES $=121.2 \mathrm{~cm}+2 \cdot 18 \mathrm{~cm}=$ 157.2 cm

Table 1: Centre-to-end lengths "L" of double flanged bends (FFK) as a function of the angle α and diameter DN

Angle α of FFK	Centre-to-end length $\mathrm{L}[\mathrm{cm}]$ of double flanged bend								
	$\begin{aligned} & \hline \mathrm{DN} \\ & 80 \end{aligned}$	$\begin{gathered} \hline \mathrm{DN} \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { DN } \\ 125 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { DN } \\ 150 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { DN } \\ 200 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { DN } \\ 250 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { DN } \\ 300 \\ \hline \end{gathered}$	$\begin{array}{r} \hline \text { DN } \\ 350 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { DN } \\ & 400 \\ & \hline \end{aligned}$
11°	13.0	14.0	15.0	16.0	18.0	21.0	25.0	10.5	11.3
22°	13.0	14.0	15.0	16.0	18.0	21.0	25.0	14.0	15.3
30°	13.0	14.0	15.0	16.0	18.0	21.0	25.0	16.5	18.3
45°	13.0	14.0	15.0	16.0	18.0	35.0	40.0	29.8	32.4
90°	16.5	18.0	20.0	22.0	26.0	35.0	40.0	45.0	50.0

Angle α of FFK	Centre-to-end length $\mathrm{L}[\mathrm{cm}]$ of double flanged bend					
	13.5	17.4	19.4	21.3	-	-
22°	18.5	25.4	28.4	31.4	-	-
30°	22.0	30.9	34.6	38.3	-	-
45°	37.5	42.6	47.8	52.9	58.1	63.2
90°	60.0	70.0	80.0	90.0	100.0	110.0

Dimensions may differ from those shown. The centre-to-end lengths "L" can also be found in Chapter 4.

Table 2 for determining the length " L_{s} " as a function of the angle α and vertical offset " H "

Length of the slope " L_{s} " $[\mathrm{cm}]$											
Angle α of FFK	$\sin \alpha$	Vertical offset H [cm] (pipe axis to pipe axis)									
		5	10	15	20	25	30	35	40	45	50
11°	0.19081	26.2	52.4	78.6	104.8	131.0	157.2	183.4	209.6	235.8	262.0
22°	0.37461	13.3	26.7	40.0	53.4	66.7	80.1	93.4	106.8	120.1	133.5
30°	0.5	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	100.0
45°	0.70711	7.1	14.1	21.2	28.3	35.4	42.4	49.5	56.6	63.6	70.7
90°	1	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0
Length of the slope " L_{s} " $[\mathrm{cm}]$											
Angle α of FFK	Vertical offset H [cm] (pipe axis to pipe axis)										
	$\sin \alpha$	55	60	65	70	75	80	85	90	95	100
11°	0.19081	288.2	314.4	340.7	366.9	393.1	419.3	445.5	471.7	497.9	524.1
22°	0.37461	146.8	160.2	173.5	186.9	200.2	213.6	226.9	240.2	253.6	266.9
30°	0.5	110.0	120.0	130.0	140.0	150.0	160.0	170.0	180.0	190.0	200.0
45°	0.70711	77.8	84.9	91.9	99.0	106.1	113.1	120.2	127.3	134.3	141.4
90°	1	55.0	60.0	65.0	70.0	75.0	80.0	85.0	90.0	95.0	100.0

Table 3 for determining the length " L_{H} " as a function of the angle α and vertical offset "H"

Horizontal length " L_{H} " [cm] of the offset. from centre to centre of bends											
Angle α of FFK		Vertical offset H [cm] (pipe axis to pipe axis)									
	$\tan \alpha$	5	10	15	20	25	30	35	40	45	50
11°	0.19438	25.7	51.4	77.2	102.9	128.6	154.3	180.1	205.8	231.5	257.2
22°	0.40403	12.4	24.8	37.1	49.5	61.9	74.3	86.6	99.0	111.4	123.8
30°	0.57735	8.7	17.3	26.0	34.6	43.3	52.0	60.6	69.3	77.9	86.6
45°	1	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0
90°	∞	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Vertical offset H [cm] (pipe axis to pipe axis)											
Angle α of FFK	$\tan \alpha$	Vertical offset H [cm] (pipe axis to pipe axis)									
		55	60	65	70	75	80	85	90	95	100
11°	0.19438	283.0	308.7	334.4	360.1	385.8	411.6	437.3	463.0	488.7	514.5
22°	0.40403	136.1	148.5	160.9	173.3	185.6	198.0	210.4	222.8	235.1	247.5
30°	0.57735	95.3	103.9	112.6	121.2	129.9	138.6	147.2	155.9	164.5	173.2
45°	1	55.0	60.0	65.0	70.0	75.0	80.0	85.0	90.0	95.0	100.0
90°	∞	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

8.4 Dimensioning of concrete thrust blocks

This summary of the on-site procedure applies only to thrust blocks at dead ends, changes of direction and branches lying in a horizontal plane, under the following limiting conditions:

- nominal size \leq DN 300
- concrete of strength class C30/37
- thrust block laid out symmetrically to the line along which the force to be absorbed (N, RN) acts
- load spread angle in the concrete: $2 \alpha_{\mathrm{K}}=90^{\circ}$
- outside temperatures of between $+10^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$
- horizontal terrain
- concrete placed against undisturbed soil and vertical wall of trench
- depth of foundation h of the thrust block: $1.0 \mathrm{~m} \leq \mathrm{h} \leq 3.0 \mathrm{~m}$ $\frac{1}{4} h \leq h_{G} \leq \frac{2}{3} h$
- height h_{G} of thrust block against the trench wall: curing time until the pressure test: at least 3 days
- approximately square bearing area of thrust block against the trench wall: $h_{G} \times b_{G}$
- water table lower than bottom face of thrust block

For practical reasons, no figures are given for the values (h_{R} and b_{R}) defining the area for transmitting force between the pipeline and the thrust block and it is recommended that the concrete covers the full width, to the sockets, of the pipeline component and that there is adequate concrete cover above the component.

For parameter values which differ from those given above, reference should be made to DVGW Arbeitsblatt GW 310, January 2008 version.

Characteristic longitudinal force
$N_{K}=p \cdot \frac{\pi \cdot d_{a}^{2}}{4} \quad[k N]$

Characteristic resultant force:
$R_{N, k}=2 N_{k} \cdot \sin \frac{\alpha_{R}}{2} \quad \rightarrow \quad R_{N, k}=N_{k} \cdot a \quad[k N] \quad$ where $a=2 \cdot \sin \alpha_{R} / 2$
(for a see table below)
$d_{a}=$ outside diameter of pipe [m]
$\mathrm{p}=$ internal pressure (test pressure) $\left[\mathrm{kN} / \mathrm{m}^{2}\right] \rightarrow 1 \mathrm{bar}=100 \mathrm{kN} / \mathrm{m}^{2}$

$\boldsymbol{\alpha}$	11°	22°	30°	45°	Dead ends and branches	90°
a	0.2	0.4	0.5	0.8	1.0	1.4

The following table shows the values of the resultant force RN,k calculated for the most widely used nominal sizes and bends, for a test pressure of 15 bars. With these figures, it is now possible to calculate the required bearing area of a thrust block against the soil.

DN	$\mathrm{N}_{\mathrm{k}}[\mathrm{kN}]$	$\mathrm{R}_{\mathrm{N}, \mathrm{k}}[\mathrm{kN}]$ for bends of angles				
	(15 bar)	111/4*	$22^{112}{ }^{\circ}$	30°	45°	90°
65	7.9	1.5	3.1	4.1	6.1	11.2
80	11.3	2.2	4.4	5.9	8.7	16.0
100	16.4	3.2	6.4	8.5	12.6	23.2
125	22.4	4.8	9.5	12.6	18.7	34.5
150	34.0	6.7	13.3	17.6	26.1	48.1
200	58.1	11.4	22.7	30.1	44.4	82.1
250	88.4	17.3	34.5	45.8	67.7	125.1
300	125.2	24.5	48.9	64.8	95.8	177.1
350	168.3	33.0	65.7	87.1	128.8	238.1
400	216.8	42.5	84.6	112.2	165.9	305.6
500	333.4	65.4	130.1	172.6	255.2	471.5
600	475.0	93.1	185.4	245.9	363.6	671.8
700	641.6	125.8	250.4	332.1	491.1	907.4
800	835.2	163.7	325.9	432.3	639.3	1,181.2
900	1,052.1	206.2	410.5	544.6	805.2	1,478.9
1,000	1,293.9	253.7	504.9	669.8	990.3	1,829.9

Required bearing area against the soil:

$$
A_{G}=b_{G} \cdot h_{G} \quad\left[m^{2}\right] \quad A_{G}=\frac{R_{N, k}}{\sigma_{h, w}} \quad\left[m^{2}\right]
$$

Allowable $\sigma_{\text {h. }}=$ allowable soil pressure $\left[\mathrm{kN} / \mathrm{m}^{2}\right]$

Allowable soil pressure (allowable $\sigma_{h . w}$) as a function of soil group and depth of foundation h for thrust blocks with a square bearing area $\left(h_{G} / b_{G}=1\right)$

NB1: Sand, gravel or sharp-edged, natural broken stone, tightly compacted
NB2: Sand or sandy gravel, compacted to medium tightness
NB3: Sand or sandy gravel, loosely compacted
B1: Till, loam or clay, of at least semi-firm consistency (not kneadable)
B2: Loam, silt or clay, of at least soft consistency (difficult to knead)
B3: Loam, silt or clay, of at least soft consistency (easily kneadable)

For any desired test pressure p, the formula which applies to bearing area is:
$A_{G}=\frac{R_{N, k}}{\text { Allowable } \sigma_{h, w}} \cdot \frac{p}{15}\left[m^{2}\right]$

Example:

Pipeline	$D N 200$
Test pressure	$p=30$ bar
Soil pressure	Allowable $\sigma_{h . w}=50 \mathrm{kN} / \mathrm{m}^{2}$
Angle of bend	$\alpha_{k}=30^{\circ}$

Question: How large does the bearing area AG against the soil need to be? $R_{N}=30.1 \mathrm{kN}$ (see table below)
$A_{G}=\frac{30,1}{50} \cdot \frac{30}{15} \quad\left[m^{2}\right]$

$A_{G}=1,204 \mathrm{~m}^{2}$

For calculating concrete thrust blocks under DVGW Merkblatt 310, there is also a tool for calculation available at www.eadips.org
Table for the dimensioning of concrete thrust blocks at bends and branches. Figures were calculated for a test pressure of 15 bars and a soil pressure of $100 \mathrm{kN} / \mathrm{m}^{2}$. Area $=$ breadth $\mathrm{B} \times$ height H .

DN	$\begin{gathered} \mathrm{cm}^{2} \\ \mathrm{~cm} \times \mathrm{cm} \end{gathered}$	$\alpha=11^{\circ}$	$\alpha=22^{\circ}$	$\alpha=30^{\circ}$	$\alpha=45^{\circ}$	$\alpha=90^{\circ}$	Dead ends and branches ${ }^{1)}$
80	$\begin{gathered} F \\ B \times H \end{gathered}$	$\begin{gathered} 500 \\ 20 \times 25 \end{gathered}$	$\begin{gathered} 500 \\ 20 \times 25 \end{gathered}$	$\begin{gathered} 590 \\ 24 \times 25 \end{gathered}$	$\begin{gathered} 870 \\ 29 \times 30 \end{gathered}$	$\begin{gathered} 1.600 \\ 38 \times 42 \end{gathered}$	$\begin{gathered} 1.130 \\ 34 \times 34 \end{gathered}$
100	$\begin{gathered} F \\ B \times H \end{gathered}$	$\begin{gathered} 500 \\ 20 \times 25 \end{gathered}$	$\begin{gathered} 640 \\ 25 \times 26 \end{gathered}$	$\begin{gathered} 850 \\ 29 \times 30 \end{gathered}$	$\begin{gathered} 1.260 \\ 35 \times 36 \end{gathered}$	$\begin{gathered} 2.320 \\ 48 \times 49 \end{gathered}$	$\begin{aligned} & 1.640 \\ & 40 \times 41 \end{aligned}$
125	$\begin{gathered} F \\ B \times H \end{gathered}$	$\begin{gathered} 500 \\ 20 \times 25 \end{gathered}$	$\begin{gathered} 950 \\ 30 \times 32 \end{gathered}$	$\begin{gathered} 1.260 \\ 35 \times 36 \end{gathered}$	$\begin{gathered} 1.870 \\ 43 \times 44 \end{gathered}$	$\begin{gathered} 3.450 \\ 58 \times 60 \end{gathered}$	$\begin{gathered} 2.440 \\ 49 \times 50 \end{gathered}$
150	$\begin{gathered} F \\ B \times H \end{gathered}$	$\begin{gathered} 670 \\ 20 \times 25 \end{gathered}$	$\begin{gathered} 1.330 \\ 36 \times 37 \end{gathered}$	$\begin{gathered} 1.760 \\ 42 \times 42 \end{gathered}$	$\begin{gathered} 2.610 \\ 50 \times 52 \end{gathered}$	$\begin{gathered} 4.810 \\ 69 \times 70 \end{gathered}$	$\begin{gathered} 3.400 \\ 58 \times 59 \end{gathered}$
200	$\begin{gathered} F \\ B \times H \end{gathered}$	$\begin{gathered} 1.140 \\ 33 \times 35 \end{gathered}$	$\begin{gathered} 2.270 \\ 48 \times 48 \end{gathered}$	$\begin{gathered} 3.010 \\ 55 \times 55 \end{gathered}$	$\begin{gathered} 4.440 \\ 67 \times 67 \end{gathered}$	$\begin{aligned} & 8.210 \\ & 91 \times 91 \end{aligned}$	$\begin{gathered} 5.810 \\ 76 \times 77 \end{gathered}$
250	$\begin{gathered} F \\ B \times H \end{gathered}$	$\begin{gathered} 1.730 \\ 42 \times 42 \end{gathered}$	$\begin{gathered} 3.450 \\ 59 \times 59 \end{gathered}$	$\begin{gathered} 4.580 \\ 68 \times 68 \end{gathered}$	$\begin{gathered} 6.770 \\ 82 \times 83 \end{gathered}$	$\begin{gathered} 12.510 \\ 112 \times 112 \end{gathered}$	$\begin{gathered} 8.840 \\ 94 \times 94 \end{gathered}$
300	$\begin{gathered} F \\ B \times H \end{gathered}$	$\begin{gathered} 2.450 \\ 49 \times 50 \end{gathered}$	$\begin{aligned} & 4.890 \\ & 70 \times 77 \end{aligned}$	$\begin{gathered} 6.480 \\ 80 \times 81 \end{gathered}$	$\begin{gathered} \hline 9.580 \\ 98 \times 98 \end{gathered}$	$\begin{gathered} 17.710 \\ 133 \times 133 \end{gathered}$	$\begin{gathered} 12.520 \\ 112 \times 112 \end{gathered}$
400	$\begin{gathered} F \\ B \times H \end{gathered}$	$\begin{gathered} 4.250 \\ 65 \times 66 \end{gathered}$	$\begin{gathered} 8.460 \\ 92 \times 92 \end{gathered}$	$\begin{gathered} 11.220 \\ 106 \times 106 \\ \hline \end{gathered}$	$\begin{gathered} 16.590 \\ 129 \times 129 \end{gathered}$	$\begin{gathered} 30.560 \\ 175 \times 175 \end{gathered}$	$\begin{gathered} 21.680 \\ 147 \times 148 \end{gathered}$

${ }^{1)}$ These values apply only to dead ends and branches of the nominal sizes specified.

8.5 Lengths of pipeline to be restrained

Forces are exerted at bends, branches, dead ends and tapers in pipelines and the size of these forces can be calculated on the basis of, for example, DVGW Merkblatt GW 310

In pipelines which already have restrained joints, such as welded or flanged joints for example, these forces are transmitted by the pipe joints. In pipelines with non-restrained joints, e.g. push-in joints (TYTON ${ }^{\circledR}$ joints) or screwed socket joints, these forces have to be:

- absorbed by means of concrete thrust blocks (see GW 310), or
- transmitted longitudinally and transferred to the surrounding soil by providing restraint at a number of sockets (socket restraint).

The number of sockets which have to be restrained by the provision of longitudinal restraint depends on the test pressure, the nominal size of the pipes and the standard to which the pipeline trench has been backfilled (type of soil, degree of compaction).

The forces generated by the internal pressure are resisted by the following:

- at bends, branches, dead ends and tapers: the frictional forces between the pipe wall and the surrounding soil,
- at bends: additionally, the bearing resistance of the soil which acts on the adjoining pipes.

Coefficient of friction

The coefficient of friction μ for the friction between the soil and the pipe is between 0.1 and 0.6. Our recommended assumed figures are as follows:
$\mu=0.5$ for non-cohesive sands, gravels and tills (soil types NB1 to NB3 under GW 310)
$\mu=0.25$ for very loamy sand, sandy loam, marl, loess or loess loam and clay, of at least semi-firm consistency (soil type B1 under GW 310)
$\mu=0.5$ for pipes with a cement mortar coating
$\mu=0 \quad$ when a pipeline is laid below the water table and/or in cohesive soils of soft and stiff consistency which are difficult to compact (soil types B2 to B4 under GW 310) \rightarrow In such cases we recommend restraining the entire pipeline.

Soil pressure

The soil pressure which is possible very much depends on the degree of compaction of the trench filling immediately surrounding the pipeline. This should be at least $D_{p r}=95 \%$ In this latter case, it can be expected that the values of allowable horizontal soil pressure (allowable $\sigma_{\text {h. w }}$) given in the graph from GW 310 (see page 63) will be reduced by 50%.

Notes

At least the following must always be restrained:

- in the case of bends: 2 sockets on each side,
- in the case of branches and dead ends: 2 sockets,
- in the case of tapers: 2 sockets on the side of the larger nominal size.

For a variety of parameters such as coefficient of friction, soil pressure, height of cover of pipes and system test pressure, the tables shown on the following pages give the lengths of pipeline to be restrained for ductile iron pipes. Where a bend at which the resultant force is directed towards the surface is to be restrained, the length of pipeline to be restrained is the same as for a branch or dead end $\left(180^{\circ}\right)$ There are other calculations which can be carried out by going to www.eadips.org

The tables on the following pages apply provided the following conditions are met:

- The pipeline trench is completely filled to the height H .
- The material used to fill the pipeline trench is carefully compacted ($\mathrm{D}_{\mathrm{pr}}=95 \%$)
- There is no water in the pipeline trench.
- Ductile iron pipes with a wall thickness of class K9 are used

Pipeline trench completely filled

Length of pipeline to be restrained $L[m]$ when the following parameters apply

Soil in the pipeline zone: Sand, gravel or broken stone, tightly compacted (NB1)
Coefficient of friction:
Soil pressure:
Height of cover of pipeline:
$\mu=0.50$
Allowable oh, $w=40 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{H}=1.00$ [m]
(pipeline trench completely filled)

Soil in the pipeline zone: Very loamy sand, sandy loam, loam, clay marl (B1)
 Coefficient of friction:
 Soil pressure:
 $\mu=0.25$
 Height of cover of pipeline: $H=1.00$ [m]
 (pipeline trench completely filled)

Length of pipeline to be restrained $L[m]$ at test pressure of 10 bars

DN Bogen	80	100	125	150	200	250	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	$\mathbf{8 0 0}$	$\mathbf{9 0 0}$	1000
180°	12	12	12	12	12	12	12	15	18	22	25	28	31	34
90°	12	12	12	12	12	12	12	12	15	18	21	24	27	30
45°	12	12	12	12	12	12	12	12	12	13	16	19	22	25
30°	12	12	12	12	12	12	12	12	12	12	12	15	18	21
22°	12	12	12	12	12	12	12	12	12	12	12	12	13	16
11°	12	12	12	12	12	12	12	12	12	12	12	12	12	12

Length of pipeline to be restrained $L[m]$ at test pressure of 10 bars

DN Bogen	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	$\mathbf{8 0 0}$	900	1000
180°	12	12	12	13	17	21	24	32	39	45	52	58	63	69
90°	12	12	12	12	12	15	18	26	33	40	46	53	58	64
45°	12	12	12	12	12	12	12	18	25	32	39	45	51	57
30°	12	12	12	12	12	12	12	12	17	25	31	38	44	50
22°	12	12	12	12	12	12	12	12	15	17	24	30	37	43
11°	12	12	12	12	12	12	12	12	12	12	12	12	12	16

Length of pipeline to be restrained $L[m]$ at test pressure of 15 bars

DN Bogen	$\mathbf{8 0}$	100	125	150	200	250	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	$\mathbf{8 0 0}$	900	1000
180°	12	15	18	21	27	32	38	49	59	69	78	87	96	104
90°	12	12	12	13	19	25	31	42	52	62	71	81	89	97
45°	12	12	12	12	12	16	22	32	44	54	64	73	82	90
30°	12	12	12	12	12	12	14	26	37	47	57	66	75	84
22°	12	12	12	12	12	12	12	17	29	39	49	59	68	77
11°	12	12	12	12	12	12	12	12	12	12	22	31	41	50

Length of pipeline to be restrained $L[m]$ at test pressure of 21 bars

DN Bogen	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	17	20	25	29	37	45	53	68	83	96	110	122	134	145
90°	12	13	17	21	30	38	46	61	76	90	103	115	127	139
45°	12	12	12	12	21	29	37	53	68	82	95	108	120	132
30°	12	12	12	12	13	21	29	45	60	74	88	101	113	125
22°	12	12	12	12	12	13	21	37	52	67	80	94	106	120
11°	12	12	12	12	12	12	12	18	22	38	52	66	79	92

Length of pipeline to be restrained $L[m]$ at test pressure of 30 bars

DN Bogen	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	600
180°	12	15	18	21	27	32	38	49	59	69
90°	12	12	12	14	20	26	32	43	53	63
45°	12	12	12	12	15	24	29	38	48	58
30°	12	12	12	12	12	15	21	32	43	53
22°	12	12	12	12	12	12	16	27	38	48
11°	12	12	12	12	12	12	12	12	18	29

Length of pipeline to be restrained $L[m]$ at test pressure of 30 bars

DN Bogen	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	250	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	500	600
180°	23	28	34	41	53	64	76	98	118	138
90°	17	22	28	34	47	58	70	92	113	132
45°	12	13	19	25	38	50	61	84	105	125
30°	12	12	12	17	30	42	53	76	97	118
22°	12	12	12	12	21	33	45	68	89	110
11°	12	12	12	12	12	12	14	37	59	81

Length of pipeline to be restrained $L[m]$ at test pressure of 45 bars

Dogen	80	100	125	150	200	250	300
180°	35	43	52	61	80	97	114
90°	29	36	46	55	73	91	108
45°	20	27	37	46	65	82	100
30°	12	19	29	38	57	74	92
22°	12	12	20	29	48	66	83
11°	12	12	12	12	16	34	52

Length of pipeline to be restrained $L[m]$ at test pressure of 45 bars

Bogen	80	100	125	150	200	250	300
180°	18	22	26	31	40	49	57
90°	12	16	20	25	34	43	51
45°	12	12	14	19	28	37	45
30°	12	12	12	14	23	32	40
22°	12	12	12	12	17	26	35
11°	12	12	12	12	12	12	14

Length of pipeline to be restrained $L[m]$ when the following parameters apply

Soil in the pipeline zone: Very loamy sand, sandy loam, loam, clay, marl (B1)
Coefficient of friction:
$\mu=0.50$
Soil pressure: Allowable $\sigma_{\text {h.w }}=30 \mathrm{kN} / \mathrm{m}^{2}$
Height of cover of pipeline: $\mathrm{H}=1.00$ [m]
(pipeline trench completely filled)

Length of pipeline to be restrained $L[m]$ at test pressure of 10 bars

DN Bogen	80	100	125	150	200	250	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	$\mathbf{8 0 0}$	900	1000
180°	12	12	12	12	12	12	12	15	19	22	25	28	31	34
90°	12	12	12	12	12	12	12	12	16	19	23	26	29	32
45°	12	12	12	12	12	12	12	12	12	15	19	22	25	28
30°	12	12	12	12	12	12	12	12	12	12	15	18	22	25
22°	12	12	12	12	12	12	12	12	12	12	12	15	18	21
11°	12	12	12	12	12	12	12	12	12	12	12	12	12	12

Length of pipeline to be restrained $L[m]$ at test pressure of 15 bars

DN Bogen	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 5 0}$	200	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	$\mathbf{8 0 0}$	900	1000
180°	12	12	12	12	12	15	18	24	29	34	39	43	47	52
90°	12	12	12	12	12	12	15	21	26	31	36	40	45	49
45°	12	12	12	12	12	12	12	16	22	27	32	37	41	45
30°	12	12	12	12	12	12	12	13	18	23	28	33	38	42
22°	12	12	12	12	12	12	12	12	14	19	25	29	34	39
11°	12	12	12	12	12	12	12	12	12	12	12	16	20	25

Length of pipeline to be restrained $L[m]$ at test pressure of 21 bars

DN Bogen	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	12	12	13	18	22	26	33	41	48	54	61	67	73
90°	12	12	12	12	15	19	23	30	38	45	52	58	64	70
45°	12	12	12	12	12	14	19	26	34	41	48	54	60	66
30°	12	12	12	12	12	12	15	23	30	37	44	51	57	63
22°	12	12	12	12	12	12	12	18	26	33	40	47	53	60
11°	12	12	12	12	12	12	12	12	12	19	26	33	40	46

Soil in the pipeline zone: Sand, gravel or broken stone, tightly compacted (NB1)
Coefficient of friction:
Soil pressure: $\mu=0.50$
Allowable $\sigma_{\text {h. }}=40 \mathrm{kN} / \mathrm{m}^{2}$
Height of cover of pipeline: $\mathrm{H}=1.50$ [m]
(pipeline trench completely filled)

Length of pipeline to be restrained $L[m]$ at test pressure of 10 bars

DN / Bend	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	12	12	12	12	12	12	12	13	15	18	20	22	25
90°	12	12	12	12	12	12	12	12	12	13	15	18	20	22
45°	12	12	12	12	12	12	12	12	12	12	12	14	16	19
30°	12	12	12	12	12	12	12	12	12	12	12	12	13	15
22°	12	12	12	12	12	12	12	12	12	12	12	12	12	12
11°	12	12	12	12	12	12	12	12	12	12	12	12	12	12

Length of pipeline to be restrained $L[m]$ at test pressure of 15 bars

DN / Bogen	80	100	125	150	200	250	300	$\mathbf{4 0 0}$	500	600	700	800	900	1000
180°	12	12	12	12	12	12	12	16	20	24	27	31	34	37
90°	12	12	12	12	12	12	12	13	17	21	25	28	31	35
45°	12	12	12	12	12	12	12	12	13	17	21	24	28	31
30°	12	12	12	12	12	12	12	12	12	14	18	21	25	28
22°	12	12	12	12	12	12	12	12	12	12	14	18	21	25
11°	12	12	12	12	12	12	12	12	12	12	12	12	12	12

Length of pipeline to be restrained $L[m]$ at test pressure of 21 bars

| $\begin{array}{l}\text { DN / } \\ \text { Bogen }\end{array}$ | 80 | 100 | 125 | 150 | 200 | 250 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 180° | 12 | 12 | 12 | 12 | 12 | 15 | 18 | 23 | 28 | 33 | 38 | 43 | 48 |

90°	12	12	12	12	12	12	15	20	26	31	36	41
45	50											
45°	12	12	12	12	12	12	12	16	22	27	32	37

30°	12	12	12	12	12	12	12	12	18	24	29	34
38	43											
22°	12	12	12	12	12	12	12	12	15	20	25	30
35	40											
11°	12	12	12	12	12	12	12	12	12	12	12	17

| 11° | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 17 | 22 | 27 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Length of pipeline to be restrained $L[m]$ at test pressure of 30 bars

DN / Bogen	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	600
180°	12	12	12	13	17	21	25	33	41	48
90°	12	12	12	12	15	19	23	31	38	45
45°	12	12	12	12	12	15	19	27	34	42
30°	12	12	12	12	12	12	15	23	31	38
22°	12	12	12	12	12	12	12	19	27	35
11°	12	12	12	12	12	12	12	12	13	21

Length of pipeline to be restrained $L[\mathrm{~m}]$ at test pressure of 45 bars

DN / Bogen	$\mathbf{8 0}$	100	125	150	200	250	300
180°	12	12	17	20	27	32	39
90°	12	12	14	17	24	30	36
45°	12	12	12	13	20	26	32
30°	12	12	12	12	16	22	29
22°	12	12	12	12	12	18	25
11°	12	12	12	12	12	12	12

Length of pipeline to be restrained $L[m]$ when the following
parameters apply

> (pipeline trench completely filled)

Length of pipeline to be restrained $L[m]$ at test pressure of 10 bars

DN Bogen	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
1800°	12	12	12	12	12	14	17	22	27	32	37	41	46	50
90°	12	12	12	12	12	12	13	18	23	28	33	38	42	46
45°	12	12	12	12	12	12	12	13	18	23	28	32	37	41
30°	12	12	12	12	12	12	12	12	12	17	22	27	32	36
22°	12	12	12	12	12	12	12	12	12	12	17	22	26	31
11°	12	12	12	12	12	12	12	12	12	12	12	12	12	12

Length of pipeline to be restrained $\mathrm{L}[\mathrm{m}]$ at test pressure of 15 bars

DN / Bogen	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	$\mathbf{8 0 0}$	$\mathbf{9 0 0}$	$\mathbf{1 0 0 0}$
180°	12	12	12	13	18	22	26	34	41	48	56	62	69	75
90°	12	12	12	12	13	18	22	30	37	45	52	59	65	72
45°	12	12	12	12	12	12	16	24	32	39	46	53	60	67
30°	12	12	12	12	12	12	12	18	26	34	41	48	55	62
22°	12	12	12	12	12	12	12	13	21	28	36	43	50	57
11°	12	12	12	12	12	12	12	12	12	12	19	23	30	37

Soil in the pipeline zone: Very loamy sand, sandy loam, loam, clay, marl (B1)
 Coefficient of friction: $\quad \mu=0.50$
 Soil pressure:
 Allowable $\sigma_{\mathrm{h} . \mathrm{w}}=30 \mathrm{kN} / \mathrm{m}^{2}$
 Height of cover of pipeline: $\mathrm{H}=1.50$ [m]
 (pipeline trench completely filled)

Length of pipeline to be restrained $L[m]$ at test pressure of 10 bars

DN / Bogen	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	$\mathbf{8 0 0}$	$\mathbf{9 0 0}$	$\mathbf{1 0 0 0}$
180°	12	12	12	12	12	12	12	12	12	16	18	20	23	25
90°	12	12	12	12	12	12	12	12	12	14	16	18	21	23
45°	12	12	12	12	12	12	12	12	12	12	13	16	18	20
30°	12	12	12	12	12	12	12	12	12	12	12	13	16	18
22°	12	12	12	12	12	12	12	12	12	12	12	12	13	15
11°	12	12	12	12	12	12	12	12	12	12	12	12	12	12

Length of pipeline to be restrained $L[m]$ at test pressure of 15 bars

| DN / |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bogen | $\mathbf{8 0}$| 180 | 125 | 150 | 200 | 250 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 180° | 12 | 12 | 12 | 12 | 12 | 12 | 13 | 16 | 20 | 24 | 28 | 31 |
| 90° | 12 | 12 | 12 | 12 | 38 | | | | | | | |
| 45° | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 18 | 22 |
| 26 | 29 | 19 | 23 | 26 | 32 | 36 | | | | | | |
| 30° | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 13 | 17 | 20 | 24 |
| 27 | 31 | | | | | | | | | | | |
| 22° | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 14 | 18 | 21 |
| 11° | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |

Length of pipeline to be restrained $L[m]$ at test pressure of 21 bars

DN / Bogen	$\mathbf{8 0}$	$\mathbf{1 0 0}$	125	150	200	250	300	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	800	$\mathbf{9 0 0}$	1000
180°	12	13	16	19	25	31	36	47	58	68	78	88	97	106
90°	12	12	13	15	21	27	32	43	54	64	74	84	93	102
45°	12	12	12	12	15	21	26	38	48	59	69	79	88	97
30°	12	12	12	12	12	15	21	32	43	54	64	74	83	92
22°	12	12	12	12	12	12	15	27	37	48	58	68	78	87
11°	12	12	12	12	12	12	12	12	17	37	38	48	58	68

Length of pipeline to be restrained $L[m]$ at test pressure of 21 bars

DN / Bogen	80	100	125	150	200	250	300	400	500	600	700	800	900	1000
180°	12	12	12	12	12	15	18	23	29	35	39	44	48	53
90°	12	12	12	12	12	13	16	21	27	32	37	42	46	51
45°	12	12	12	12	12	12	13	18	24	29	34	39	44	48
30°	12	12	12	12	12	12	12	16	21	26	32	36	41	46
22°	12	12	12	12	12	12	12	13	18	24	29	34	38	43
11°	12	12	12	12	12	12	12	12	12	13	19	24	29	34

Length of pipeline to be restrained $\mathrm{L}[\mathrm{m}]$ at test pressure of 30 bars

DN / Bogen	$\mathbf{8 0}$	100	125	$\mathbf{1 5 0}$	200	250	300	400	500	600
180°	16	19	23	28	36	44	52	68	83	98
90°	12	15	19	23	32	40	48	64	79	94
45°	12	12	13	17	26	34	42	58	73	88
30°	12	12	12	12	20	29	37	53	68	83
22°	12	12	12	12	14	23	31	47	63	78
11°	12	12	12	12	12	12	12	26	42	57

Length of pipeline to be restrained $\mathrm{L}[\mathrm{m}]$ at test pressure of 30 bars

DN / Bogen	80	100	125	150	200	250	300	400	500	600
180°	12	12	12	13	18	22	26	34	41	49
90°	12	12	12	12	16	20	24	32	39	47
45°	12	12	12	12	13	17	21	29	36	44
30°	12	12	12	12	12	14	18	26	34	41
22°	12	12	12	12	12	12	15	23	31	38
11°	12	12	12	12	12	12	12	13	21	28

DN / Bogen	$\mathbf{8 0}$	100	$\mathbf{1 2 5}$	$\mathbf{1 5 0}$	200	250	300
180°	24	29	36	42	54	67	79
90°	20	25	31	38	50	63	75
45°	14	19	25	32	44	57	69
30°	12	13	20	26	39	51	64
22°	12	12	14	20	33	45	58
11°	12	12	12	12	12	24	36

Length of pipeline to be restrained $L[m]$ at test pressure of 45 bars

DN $/$ Bend	80	100	125	150	200	250	300
180°	12	14	17	21	27	33	39
90°	12	12	15	18	25	31	37
45°	12	12	12	15	22	28	34
30°	12	12	12	13	19	25	31
22°	12	12	12	12	16	22	29
11°	12	12	12	12	12	12	18

8.6 Installation instructions for pipes with a ZMU

Applicability

These installation instructions apply to ductile iron pipes to EN 545 with a cement mortar coating (ZMU) to EN 15 542. The installation instructions applicable to the given type of joint should be followed when assembling joints between pipes.

Recommendations for installation

Installation must be carried out in such a way that the cement mortar coating is not damaged. The following options are available for protecting the socket joints:

- rubber sleeves for protecting cement mortar,
- heat-shrink material or protective tapes (to DIN 30 672),
- mortar bandages (e.g. made by the Ergelit company) for special applications.

Rubber sleeves for protecting cement mortar

Rubber sleeves for protecting cement mortar can be used for TYTON ${ }^{\circledR}$, BRS ${ }^{\circledR}$ and $V R S^{\circledR}-$ T joints in pipes up to $D N 800$ in size. Before the joint is assembled, turn the sleeve inside out and, with the larger diameter end leading, pull it onto the spigot end sufficiently far for the cement mortar coating to project from the sleeve by about 100 cm . Fitting can be made easier by applying lubricant to the cement mortar coating.

Once the joint has been assembled and the seating of the gasket checked with the depth gauge, turn the sleeve back outside in, pull it along until it is resting against the end-face of the socket and hook it over the socket. It will then rest firmly and tightly against the pipes

Shrink-on material and protective tapes

Shrink-on material and protective tapes can be used on all joints. The shrink-on material must be suitable for the dimensions of the particular joint and for the intended use; see Chapter 6. p. 51.

Fitting a shrink-on sleeve

Pull the shrink-on sleeve onto the socket end before the joint is assembled. The surface to be covered should be prepared as detailed in Merkblatt GW 15, i.e. the area to which the sleeve is to be fitted should be freed of any rust, grease, dirt and loose particles. Preheat the surface to about $60^{\circ} \mathrm{C}$, and thus dry it, with a propane gas flame.

After the joint has been assembled, pull the shrink-on sleeve over the joint, leaving approximately half its length on the socket.

The protective lining present in the sleeve should not be removed until after the sleeve has been positioned on the socket and shortly before it is going to be heated.
With a propane gas flame set to a soft setting, heat the shrink-on sleeve evenly all round at the point where the end-face of the socket is situated until the sleeve begins to shrink and the outline of the socket appears within it. Then, while keeping the temperature even by fanning the burner up and down in the circumferential direction, shrink on first the part of the sleeve on the socket and then, starting from the end face of the socket, the part on the barrel of the pipe.

The process has been satisfactorily carried out when:

- the whole of the sleeve has been shrunk onto the joint between the pipes,
- it is resting smoothly against the surface with no cold spots or air bubbles and the sealing adhesive has been forced out at both ends,
- the requisite overlap of 50 cm over the factory-applied coating has been achieved.

Covering a socket joint with a shrink-on sleeve of tape material

The shrink-on tape is available in pre-cut form with a sealing strip already incorporated or in 30 m rolls which include a sealing strip for each socket.
When in 30 m rolls, the shrink-on tape has to be cut to the appropriate length on site (see p. 51).
The surface to be covered should be prepared as detailed in Merkblatt GW 15, i.e. the area to which the tape is to be fitted should be freed of any rust, grease, dirt and loose particles. Preheat the surface to about $60^{\circ} \mathrm{C}$, and thus dry it, with a propane gas flame. Detach the backing film from the tape for about 150 mm . Position the end of the tape centrally over the joint between the pipes, at right angles to the plane of the joint, and wrap the tape loosely round the joint, removing the rest of the backing film as you do so. The overlap between the ends of the tape should be at least 80 cm and should be situated at an easily accessible point in the top third of the pipes. At low ambient temperatures, it is useful for the adhesive side of the point of overlap and of the sealing strip to be heated for a short period.

Position the sealing strip centrally across the overlap and with a constantly moving soft yellow flame heat the strip evenly from the outside until the lattice pattern of the fabric becomes apparent. Then, wearing gloves, press the sealing strip hard against the tape. Moving the flame evenly in the circumferential direction of the pipes, shrink the tape first onto the socket, beginning on the side away from the sealing strip, and then, in the same way, onto the spigot end.

The process has been satisfactorily carried out when:

- the whole of the tape has been shrunk onto the joint between the pipes
- it is resting smoothly against the surface with no cold spots or air bubbles and the sealing adhesive has been forced out at both ends
- the requisite overlap of 50 cm over the factory-applied coating has been achieved.

With the types of socket protection described, the whole of the angular deflections specified in the installation instructions can still be used even after the protection has been applied

Rather than the molecularly cross-linked Thermofit heat-shrinkable material, what may also be used are protective tapes of other kinds provided they meet the requirements of DIN 30672 and carry a DIN/ DVGW registered number.

Wrapping with protective tapes

Once the joint has been fully assembled, the protective tape is wrapped around the joint in several layers in such a way that it covers the cement mortar coating for $\geq 50 \mathrm{~mm}$.

Wrapping with a mortar bandage (made by the Ergelit company)
Soak the mortar bandage in a bucket filled with water until no more air bubbles are released; maximum soak time should be two minutes Take the wet bandage out of the bucket and gently press the water out of it.

Wrap the bandage round the area to be covered (cover the cement mortar coating for $\geq 50 \mathrm{~mm}$) and shape it to the contours of the joint.

For a layer 6 mm thick, wrap the bandage round twice or in other words make 50\% of the bandage an overlap
The protective bandage will be able to take mechanical loads after about 1 to 3 hours.

Filling of the pipeline trench

The bedding for the pipeline should be laid in accordance with EN 805 or DVGW Arbeitsblatt W 400-2.
Virtually any excavated material can be used as a filling material, even soil containing stones up to a maximum grain size of 100 mm (see DVGW Arbeitsblatt W 400-2). Only in special cases does the pipeline need to be surrounded with sand or with some other foreign material.

In the region of surfaces carrying traffic, the filling of pipeline trenches should follow the Merkblatt für das Verfüllen von Leitungsgräben (issued by the Forschungsgesellschaft für das Straßen- und Verkehrswesen of Cologne)

Push-in joints protected by rubber sleeves for protecting cement mortar or by shrink-on material should be surrounded by finegrained material or should be protected by pipe protection mats.

Cutting of pipes

Ensure that the pipes are suitable for cutting (see p. 82).
Before pipes are cut, the cement mortar coating must be removed for a length of 2L or 2LS, as the case may be, as shown in the Table below (for collars, allowance must also be made for the dimension for sliding on the collar).

DN	TYTON $/$	VRS $^{\oplus}-\mathrm{T}$
	$\mathrm{L}(\mathrm{mm})$	$\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$
80	95	165
100	100	175
125	100	185
150	105	190
200	110	200
250	115	205
300	120	210
350	120	-
400	120	230
500	130	245
600	145	300
700	205	315
800	220	330
900	230	345
1,000	245	360

The lengths of spigot ends free of cement mortar coating appropriate to TYTON ${ }^{\circledR}$ gaskets apply as follows to sockets to DIN 28603
Form A
up to DN 600

Form B (long socket) DN 700 and above

Procedure for removing the cement mortar coating

- At the dimensions given in the above table, mark lines indicating the cuts to be made in the cement mortar coating
- Following the lines, make cuts into the cement mortar coating to about half the depth of the layer (to a depth of 2-3 mm). Important: Do not cut into the cast iron wall of the pipe! Protective workwear, especially safety goggles, must be used all the time.
- Make two or three longitudinal cuts (as described above) into the cement mortar coating, distributing the cuts around the circumference.
- In the case of pipes which have had a primer applied between the zinc coating and the cement mortar coating, the cement mortar coating should be heated to approx. $160-200^{\circ} \mathrm{C}$ before it is detached. Such pipes are identified by a line below the marking for the coating standard, i.e. "EN 15 542".
- Detach the cement mortar coating by gentle blows with a hammer - starting at the longitudinal cuts.
- Split all the cuts apart with a cold chisel.
- Remove the cement mortar coating and free the spigot end of any residual cement mortar with a scraper and wire brush.
- The pipe can now be cut and the spigot end bevelled as indicated in the section entitled "Cutting of pipes" (see p. 82).

It is essential for the new zinc-coated spigot ends which are produced to be repainted with a suitable finishing coating!

Fitting pipe saddles

To make house connections to ductile iron pipes with a cement mortar coating, what should preferably be used are saddles with an internal sealing sleeve.

Within the hole in the pipeline, this type of pipe saddle seals directly against the surface of the ductile iron pipe in the drilled hole made in the pipe. Fittings of this kind are available from many manufacturers, e.g. Erhard, EWE and Hawle.

For further information see DVGW-Merkblatt W 333.

On-site repairs to the cement mortar coating (ZMU)

All repairs to any detached parts of the ZMU must be carried out using the repair kit supplied by the pipe manufacturer.

Contents of the repair kit

approx. 4 kg of sand/cement mixture
plus approx. 5 m of 200 mm wide gauze
1 litre of diluted additive

These components are specially adjusted for use with TRM pipes.
They must not be replaced by any other material or used to produce classes of cement mortar different from those specified on the repair kit!

Repair instructions

A proper repair can only be made at temperatures of above $5^{\circ} \mathrm{C}$. Apart from the repair kit, what you will also need are:

Rubber gloves
Dust-tight protective goggles
Wire brush
Spatula
Additional mixing vessel
Possibly water for mixing

If there is severe damage:

Hammer

Cold chisel

Preparing the damaged area

If there is only slight surface damage, simply remove any loose pieces of cement mortar and any pieces which are not firmly attached with the wire brush. Finally, moisten the damaged area.

If the damage is severe, it is advisable for the cement mortar to be completely removed (down to the bare metal) in the damaged area with a hammer and cold chisel.
The protective goggles must be worn when doing the above! Remove the cement mortar in such a way that square edges are obtained:

Right

Wrong

Damaged area

Damaged area

Do not use excessive force when removing the cement mortar as this may cause the sound cement mortar to become detached in the region next to the damaged area.

Remove any loose material which is still present with the wire brush and moisten the damaged area.

Mixing

First of all stir the diluted additive well. Then mix the mortar, adding as little additive and water as possible, until a mixture which can be applied easily with the spatula is obtained - the amount of water contained in the additive is normally all that is needed. To begin with, use only the additive solution and meter it in carefully. Then add extra
water if necessary (e.g. at high temperatures in summer).

Application

Once the mortar is easily workable, fill the damaged area with it and level off the surface. Finally, smooth the repaired area, and especially the parts at the edges, with a moistened, wide paintbrush or a moistened dusting brush.

If the damage covers a large area, the gauze is needed to fix the mortar in place in the damaged region. For this purpose the gauze should be positioned about $1-2 \mathrm{~mm}$ below the surface of the mortar. The gauze must not come into contact with the metal surface of the pipe because, if it does so, it will then act as a wick. Having completed the repair, seal the repair kit again so that it is airtight.

Drying and entry into service

Repairs covering a particularly large area should be covered with plastic film to allow them to dry slowly, thus minimising the risks of cracks forming.

There should be a wait of at least 12 hours before repaired pipes are installed or the damaged area should be provided with adequate protection against mechanical loads.

8.7 Installation instructions VRS $^{\circledR}-$ T joints DN 80 to DN 500

Applicability

These installation instructions apply to ductile iron pipes and fittings of DN 80 to DN 500 nominal sizes with restrained $V R S^{\circledR}-T$ push-in joints.

For recommendations for transport, storage and installation, see p. 60 ff. For laying tools and other accessories, see Chapter 6. For very high internal pressures and trenchless installation techniques (e.g. the press-pull, rocket plough or HDD techniques), an additional high pressure lock should be used in pipes of DN 80 to DN 250 nominal sizes (see the section entitled "High pressure lock" on p. 17).
The number of joints to be restrained should be decided on in accordance with DVGW Merkblatt GW 368 (see p. 65 ff).

For allowable tractive forces for trenchless installation techniques, see table below or DVGW Arbeitsblätter GW 320-1, 321, 322-1, 322-2, 323 and 324.

DN	$\left\|\begin{array}{c} \text { PFA } \\ \text { [bar }{ }^{12} \end{array}\right\|$	Allowable tractive force $F_{\text {oll }}[k N]$ TRM	Max. angular deflection at sockets ${ }^{3)}$ [${ }^{\circ}$]	Min. radius of curves [m]	Number of fitters	Assembly time without joint protection [min]	Assembly time when using a protective sleeve [min]	Assembly time when using a shrink-on sleeve [min]
80*	110	115	5	69	1	5	6	15
100*	100	150	5	69	1	5	6	15
125*	100	225	5	69	1	5	6	15
150*	75	240	5	69	1	5	6	15
200	63	350	4	86	1	6	7	17
250	44	375	4	86	1	7	8	19
300	40	380	4	86	2	8	9	21
400	30	650	3	115	2	10	12	25
500	30	860	3	115	2	12	14	28
600	32	1,525	2	172	2	15	18	30
700	25	1,650	1.5	230	2	16	-	31
800	16	1,460	1.5	230	2	17	-	32
900	16	1,845	1.5	230	2	18	-	33
1,000	10	1,560	1.5	230	2	20	-	35

${ }^{1}$) Basis for calculation was wall-thickness class K9. Higher pressures and tractive forces are possible in some cases and should be agreed with the pipe manufacturer. ${ }^{2)}$ When the route is straight (max. of 0.5° deflection per joint), the tractive forces can be raised by 50 kN . High-pressure lock is required on DN 80 to DN 250 pipes. ${ }^{33}$ At nominal dimension: *Wall-thickness classes K10

Construction of the joint

Retaining chamber

Cleaning

Clean the surfaces of the seating for the gasket, the retaining groove and the retaining chamber which are indicated by the arrows and remove any excess paint (paint humps, bubbles or pimples) from them. Use a scraper (e.g. a bent screwdriver) to clean the retaining groove.

Clean the spigot end. Remove any fouling and any excess paint (paint humps, bubbles or pimples).

Positions of the openings in the socket end-face when the pipe is in the pipeline trench

DN 80 to DN 250

DN 300 to DN 500

For inserting the locks or bolting on the clamping ring, it is advisable for the openings in the end-face of the socket to be positioned as shown.

For fittings, the position of the openings will depend on the particular installation situation. For WKG pipes with trace heating, care must be taken to see that the heating cable is positioned at the bottom of the pipe.

Inserting the gasket

Lubricant should be used below TYTON ${ }^{\circledR}$ gaskets.
For this purpose. carefully wipe a thin film of the lubricant supplied with the pipes by the manufacturer over the sealing surface
 identified by the oblique lines.
Note: Do not put any lubricant in the retaining groove (the narrow groove)!
No lubricant is used with VRS ${ }^{\circledR}-T$ gaskets.

Clean the gasket and make a loop in it so that it is heart-shaped.

Fit the gasket into the socket so that the hardrubber claw on the outside engages in the retaining groove in the socket.
Then press the loop flat.

If you have any difficulty in pressing the loop flat, pull out a second loop on the opposite side. These two small loops can then be pressed flat without any difficulty.

The inner edge of the hard-rubber claw of the gasket must not project below the locating collar.

Right

Wrong

Apply a thin layer of lubricant to the gasket.

Spigot end with welded bead

Apply a thin layer of lubricant to the cleaned spigot end - and particularly to the bevel - and then pull or push the spigot end into the socket until it is in abutment with the end-wall of the socket. Pipes must not be in a deflected angular position when they are being pushed in or the locks are being inserted.

1) Insert the "right" lock in the opening in the socket and slide it to the right as far as possible.
2) Insert the "left" lock in the opening in the socket and slide it to the left as far as possible.
3) Press the catch into the opening in the socket.

On pipes of DN 300 size and above, steps 1 to 3 have to be carried out twice because 2×2 locks and 2 catches are used in this case.

Spigot end without a welded bead

First insert the two halves of the clamping ring into the retaining chamber separately and then connect them together loosely with the two bolts. Mark the depth of insertion (the depth of the socket) on the spigot end.

Apply lubricant to the cleaned spigot end - and particularly to the bevel - and then pull or push it in until it is fully home in the socket. Pipes must not be at an angular deflection when they are being pulled in. After the pulling-in, the mark previously made on the spigot end should be almost in line with the end-face of the socket.

Pull the clamping ring towards the end-face of the socket as far as possible and then tighten the bolts $\geq 60 \mathrm{Nm}$.

Tightening torque $\geq 60 \mathrm{Nm}$

Notes on clamping ring joints

Care should be taken to see that clamping ring joints are not used in above-ground pipelines or pipelines subject to pulsations or for trenchless installation techniques. For single socket bends, double socket bends, 90° flange socket duckfoot bends and 90° duckfoot bends with side outlets, the PFA is a maximum of 16 bars. Please enquire for PFA's of more than 16 bars.
For connections at bends where the operating pressure is > 16 bars, an adaptor, a piece of cut pipe with two spigot ends, is turned through 180° so that the end carrying the welded bead mates with the socket of the bend.

Before the remaining, socketed, piece of the cut pipe is installed, an uncut pipe is laid. The spigot end of the piece of cut pipe, which does not carry a welded bend, is then inserted in the socket of the uncut pipe.
Our Applications Engineering Division should be consulted before clamping rings are used in culvert or bridge pipelines and before joints using them are laid on steep slopes, in casing tubes or pipes, in utility tunnels or in above-ground pipelines or pipelines subject to pulsations. Clamping rings should not be used in these cases or in trenchless installation techniques. The pieces of adapter pipe required should be provided with welded beads.

Locking

Pull or push the pipe out of the socket, e.g. with a laying tool, until the locks or the clamping ring are firmly in abutment in the retaining chamber. The joint is now restrained

Angular deflection

Once the joint has been fully assembled, pipes and fittings can be deflected angularly as follows:
DN 80 to DN 150 －max．of 5°
DN200 to DN $300-$ max．of 4°
DN4OO and DN 500 －max．of 3°

For a pipe length of $6 \mathrm{~m}, 1^{\circ}$ of angular deflection causes the axis of the pipe to lie approx． 10 cm off the axis of the pipe or fitting installed previously，i．e． $3^{\circ}=30 \mathrm{~cm}$ ．With 5 m long pipes， 1° corresponds to approx． 9 cm

Note on installation

Make sure that，as a function of the internal pressure and the tolerances on joints，it is possible for extensions of up to about 8 mm to occur．
To allow for the travel of the pipeline when it extends when pressure is applied，joints at bends should be set to the maximum allowable angular deflection in the negative direction．

Cutting of pipes

Ensure that the pipes are suitable for cutting（see p．82）．If pipes have to be cut on site，the welded bead required for the $\mathrm{VRS}^{\circledR}-\mathrm{T}$ push－in joint has to be applied using an electrode as specified by the pipe manufacturer．The welding work should be done in accordance with Merkblatt DVS 1502 or the technical recommendations for welding given from p． 83 ff on．

The distance between the end of the spigot end and the welded bead and the size of the welded bead must be as shown in the table below．
Electrode type，e．g．Castolin 7330－EC，UTP FN 86，ESAB OK 92．58， Gricast 31 or 32.
The electrode diameter should be 3.2 mm below DN 400 and 4.0 mm at DN 400 and above．

For electrode consumption see p． 76

DN	80	100	125	150	200	250	300	400	500
L	86 ± 4	91 ± 4	96さ4	101 4	106 ± 4	106 ± 4	106 ± 4	115さ5	120 5
a	8 ± 2	8 ± 2	8 ± 2	8 ± 2	9さ2	9 ± 2	9 ± 2	10 ± 2	10さ2
b	$5^{+0.1}$	$5^{+0.5}$	$5^{\circ 0.1}$	$5^{10.5}$	$5.5{ }^{-1.5}$	$5.5{ }^{+0.5}$		$6^{-0.1}$	

To ensure that there is a good welded bead at a uniform distance from the end，a copper welding guide must be fastened to the spigot
end at the specified distance from the end（see table）as a guide for application．The area to be welded must be bright metal．Any fouling or zinc coating must be removed by filing or grinding．When the welding guide is removed，the cut edge of the spigot end should be matched to the form of an original spigot end and the area of the welded bead should be cleaned．Finally，the appropriate protective coating should be applied to both these areas．

Disassembly

Push the pipe as far as possible into the socket along its axis．Remove the catch through the opening in the socket end－face．Slide the locks round and remove them through the opening．If a high－pressure lock is fitted， slide it round from the bottom of the pipe to the opening with a flat object （e．g．a screwdriver）and remove it．

Disassembly of clamping ring joints

Push the pipe into the socket along its axis until it is in abutment． Remove the clamping bolts and then loosen the halves of the clamping ring by hitting them with a hammer．Ensure that the halves of the clamping ring remain loose during disassembly（if necessary by again hitting them with a hammer as the spigot end is pulled out）．They can also be stopped from jamming on the spigot end during disassembly by inserting a square steel bar between the lugs at the ends of the halves．Do not under any circumstances hit the socket or the barrel of the pipe with the hammer！

High－pressure lock

An additional high－pressure lock should be used whenever very high internal pressures are expected（e．g．in the case of turbine pipelines）and whenever trenchless installation techniques are used（e．g．the press－pull， rocket plough or horizontal directional drilling techniques）．
Before the left and right locks are inserted，the high－pressure lock is inserted in the retaining chamber through the opening in the end－face of the socket and is positioned at the bottom of the pipe．The locks can then be inserted and the high－pressure lock is thus situated between their flat ends．The locks are then fixed in place in the usual way with the catch． The illustration below shows a fully assembled $\mathrm{VRS}{ }^{\circledR}-\mathrm{T}$ socket with a high－ pressure lock．The high－pressure lock can be used for pipes of nominal sizes from DN 80 to DN 250.

8.8 Installation instructions BLS ${ }^{\text {® }}$ joints DN 600 - DN 1000

Applicability

These installation instructions apply to DN 600 - DN 1,000 ductile iron pipes and fittings with restrained BLS ${ }^{\circledR}$ push-in joints.
For recommendations for transport, storage and installation, see p. 60 ff. For laying tools and other accessories, see Chapter 6.

Construction of the joi

Retaining chamber

Number n of locking segments per joint

DN	600	700	800	900	1,000
n	9	10	10	13	14

Cleaning

Clean the surfaces of the seating for the gasket, the retaining groove and the retaining chamber which are indicated by the arrows and remove any excess paint (paint humps, bubbles or pimples).

Use a scraper (e.g. a bent screwdriver) to clean the retaining groove.

Clean the spigot end. Remove any fouling and any excess paint (paint humps, bubbles or pimples).

Positions of the openings in the socket end-face

The opening in the end-face of the socket should always be situated at the top of the pipe.

Inserting the gasket

Lubricant should be used below TYTON ${ }^{\circledR}$ gaskets.
For this purpose, carefully wipe a thin film of the lubricant supplied with the pipes by the manufacturer over the sealing surface
 identified by the oblique lines.

Note: Do not put any lubricant in the retaining groove (the narrow groove)!

Clean the TYTON® gasket and make a loop in it so that it is heart-shaped

Fit the TYTON ${ }^{\circledR}$ gasket into the socket so that the hard-rubber claw on the outside engages in the retaining groove in the socket. Then press the loop flat.

If you have any difficulty in pressing the loop flat, pull out a second loop on the opposite side. These two small loops can then be pressed flat without any difficulty.
The inner edge of the hard-rubber claw of the TYTON® gasket must not project below the locating collar.

Right

Wrong

Apply a thin layer of lubricant to the $T Y T O N^{\circledR}$ gasket.

Assembling the joint

Apply a thin film of lubricant to the cleaned spigot end - and particularly to the bevel - and then pull or push it in until it is fully home in the socket. The pipes must not be at an angular deflection when being pulled in or when the lock segments are being fitted.

First insert the locking segments through the opening in the end-face of the socket and distribute them around the circumference of the pipe, working alternately left and right.
Then move all the segments round in one direction until the last segment can be inserted through the openings in the end-face of the socket and can be moved to a position where it provides secure locking.

Only a small part of the humps on the last locking segment should be visible through the opening in the end-face of the socket.
Should segments jam, they should be moved to their intended position by gentle taps with a hammer by moving the pipe as it hangs from the sling.

Do not under any circumstances hit the socket or the barrel of the pipe with the hammer!

Locking

Pull back all the locking segments in the outward direction until they are in abutment against the slope of the retaining chamber. Then fit the clamping strap around the outside of the segments as shown in the illustration. Tighten the clamping strap only sufficiently far enough to still allow the locking segments to be moved. Now line up the locking segments. They should be resting against the barrel of the pipe over their full area and should not be overlapping. Then tighten the clamping strap until the locking segments are bearing firmly against the pipe around the whole of its circumference. It should now no longer be possible to move the locking segments. By pulling on it axially (e.g. by means of a locking clamp), pull the pipe out of the joint until the welded bead comes to rest against the segments. When the pipe is in an undeflected state, the locking segments should all be approximately the same longitudinal distance away from the end-face of the socket.

Note: A metal clip rather than the clamping strap should be used in all trenchless techniques.

Retaining chamber

Angular deflection

Once the joint has been fully assembled, pipes and fittings can be deflected angularly as follows:

DN 600 - max. of 2.0°
DN 700 - max. of 1.5°
DN 800 - max. of 1.5°
DN 900 - max. of 1.5°
DN1000 - max. of 1.5°

For a pipe length of $6 \mathrm{~m}, 1^{\circ}$ of angular deflection causes the axis of the pipe to lie approx. 10 cm off the axis of the pipe installed previously, i.e. $3^{\circ}=30 \mathrm{~cm}$.

Note on installation

Please remember that, as a function of the internal pressure, it is possible for extensions of up to about 8 mm per joint to occur as a result of the locking segments adjusting.

To allow for the travel of the pipeline when it extends when pressure is applied, joints at bends should be set to the maximum allowable angular deflection in the negative direction.

Cutting of pipes

Ensure that the pipes are suitable for cutting (see p. 82). If pipes have to be cut on site, the welded bead required for the BLS ${ }^{\circledR}$ push-in joint has to be applied using an electrode as specified by the pipe manufacturer. The welding work should be done in accordance with Merkblatt DVS 1502 or the technical recommendations for welding given from p .83 ff on.

The distance between the end of the spigot end and the welded bead and the size of the welded bead must be as shown in the table below.
Electrode type, e.g. Castolin 7330-EC, UTP FN 86, ESAB OK 92.58, Gricast 31 or 32.

DN	600	700	800	900	1,000
L	116	134	143	149	159
a	9 ± 1				
b	6	6	6	6	6

To ensure that there is a good welded bead at a uniform distance from the end, a copper welding guide must be fastened to the spigot end at the specified distance from the end (see table) as a guide for application.

The area to be welded must be bright metal. Any fouling or zinc coating must be removed by filing or grinding.

When the welding guide is removed, the cut edge of the spigot end should be matched to the form of an original spigot end and it and the area of the welded bead should be cleaned.
Finally, the appropriate protective coating should be applied to both these areas.

Disassembly

Push the pipe into the socket along its axis until it is in abutment and remove the locking segments through the opening in the socket end-face.

Special pipelines

Our Applications Engineering Division should be consulted if for example joints of this kind are to be used in casing tubes or pipes, on bridges, for the horizontal direction drilling technique or in culvert pipelines.

Pipelines on steep slopes should be installed from the top down, meaning that after each individual pipe has been extended the locking will be maintained by gravity. If this procedure cannot be followed, suitable steps must be taken to prevent the locking from being cancelled out by gravity.

Combining fittings belonging to other systems with BLS ${ }^{\circledR}$

 jointsOur Applications Engineering Division should be consulted if pipe ends of the present type are to be combined with fitting sockets belonging to other systems.

Electrode consumption

DN nominal size	Electrode consumption per bead Ø 3.2 mm [unit]	Electrode consumption per bead $\varnothing 4.0 \mathrm{~mm}$ [unit]	Time required per welded bead [min]
80	5		15
100	6		18
125	8		24
150	9	-	27
200	12		36
250	15		43
300	17		50
400	8 +	11	57
500	11 +	14	75
600	$13+$	16	87
700	16 +	19	105
800	18 +	22	120
900	21 +	25	138
1,000	$23+$	27	150

The welded bead should normally be applied in two passes, the root pass normally being welded with a $\varnothing 4.0 \mathrm{~mm}$ electrode on pipes of DN 400 size and above.

The electrode consumptions and times required given in the table are only a guide

8.9 Installation instructions TYTON ${ }^{\circledR}$ push-in joints

Applicability

These installation instructions apply to ductile iron pipes and fittings to EN 545 and DIN 28650 with TYTON ${ }^{\circledR}$ push-in joints to DIN 28 603. There are separate installation instructions for installation and assembly when using restrained joints (VRS ${ }^{\circledR}-T$ and $B R S^{\circledR}$ joints) and/or for pipes with a cement mortar coating (ZMU).
For recommendations for transport, storage and installation, see p. 60 ff .
For laying tools and other accessories, see Chapter 6.

Construction of the joint

Spigot end
DN 80 to DN 600

Spigot end
DN 700 to DN 1000 (long socket

Cleaning

Clean the surfaces of the seating for the gasket and the retaining groove which are indicated by the arrows and remove any excess paint (paint humps, bubbles or pimples) from them. Use a scraper (e.g. a bent screwdriver) to clean the retaining groove.

Clean the spigot end back to the line marking. Remove any fouling and any excess paint (paint humps, bubbles or pimples)

Carefully apply a thin coat of the lubricant supplied by the pipe manufacturer only to the sealing surface identified by the oblique lines.
Note: Do not apply any lubricant to the retaining groove (the narrow groove).

Assembling the joint

Inserting the TYTON ${ }^{\circledR}$ gasket.

Clean the $\mathrm{TYTON}^{\circledR}$ gasket and make a loop in it so that it is heart-shaped

Fit the TYTON ${ }^{\circledR}$ gasket into the socket so that the hard-rubber claw on the outside engages in the retaining groove in the socket.

Then press the loop flat
If you have any difficulty in pressing the loop flat. pull out a second loop on the opposite side. These two small loops can then be pressed flat without any difficulty.
The inner edge of the hard-rubber claw of the gasket must not project below the locating collar.

Right

Wrong

Apply a thin layer of lubricant to the gasket

Apply a thin layer of lubricant to the spigot end - and particularly to the bevel - and then insert the spigot end into the socket until it is resting against the gasket in a centralised position. The axes of the pipe or fitting already installed and the fitting or pipe which is being connected to it should be in a straight line.

Push the spigot end into the socket until the first marking line can no longer be seen.

Once the joint has been assembled, check the seating of the gasket with the depth gauge around the entire circumference.

The gauge should penetrate into the gap between the spigot end and the socket to a uniform depth all round the circumference. If it is able to penetrate deeper at one or more points, it is possible that the gasket has been pushed out of the retaining groove at these points and hence that there will be leaks there.

If this is the case, the joint must be disassembled and the seating of the gasket checked.

Angular deflection

Once the joint has been fully assembled, pipes and fittings can be deflected angularly as follows:

Up to DN 300 - max. of 5°
DN 400 - max. of 4°
DN 1000 - max. of 3°

For a pipe length of $6 \mathrm{~m}, 1^{\circ}$ of angular deflection causes the axis of the pipe to lie 10 cm off the axis of the pipe or fitting installed previously, i.e. $3^{\circ}=30 \mathrm{~cm}$.
With 5 m long pipes, 1° corresponds to approx. 9 cm .

Cutting of pipes

Ensure that the pipes are suitable for cutting (see p. 82). Cut pipes must be bevelled at the cut end to match the original spigot end.

The bevel must be made as shown in the diagram.

The cut surface must be re-painted (see p. 82).
Copy the line markings from the original spigot end to the new spigot end which has been cut.

Disassembly

If newly installed pipes or fittings have to be disassembled, this can be done without any special tools. Either use the laying tool to do this or move the pipe or fitting gently to and fro while pulling on it.

Pipelines fitted with TYTON ${ }^{\circledR}$ push-in joints which have already been in place for quite some time can be disassembled as follows.

With a laying tool

With a clamp and a jack

8.10 Installation instructions for flanged joints

Applicability

These installation instructions apply to ductile iron pipes and fittings to EN 545 with flanges to EN 1092-2.

Construction of the joint

Clean the bolt holes and the surfaces of the sealing ridge and the gasket which are indicated by the arrows and remove any excess paint (paint humps, bubbles or pimples) from them.

Assembling the joint

For recommendations for transport, storage and installation,
see p. 60.
For better assembly and greater reliability in operation, only gaskets with a steel inlay should be fitted.

Flanged pipes and fittings must be carefully supported.
Rigid joints in pipes are unable to withstand differing loads and differing amounts of settlement. Under no circumstances must the pipes or fittings be supported on stones or other similar material.

Positioning the bolt holes

The rule for the positioning of bolt holes which applies to flanged pipes and flanged fittings is that no bolt holes must be situated on the vertical or horizontal centre-lines of the flanges.

Note in the installation of flanged fittings

To make it easier for flanged fittings to be installed properly, their flanges have two oppositely situated notches made in them. These notches must be in line with one another horizontally or vertically at the time of installation.

Installing double flanged tapers

The example shown is an FFR 300/200 PN 10 taper
Because of the differing numbers of bolt holes in the two flanges of double flanged tapers, the next valve or fitting will be skewed around its axis if the taper is not correctly installed. The amounts of skew may, depending on the nominal size, be up to 22.5°.

Important!

With large nominal sizes such skews are almost imperceptible.

Tightening torques

The tightening torque M_{D} depends on the gasket material, the nominal size DN and the pressure rating $P N$.

It can be calculated as follows:
$\mathrm{M}_{\mathrm{D}} \mathrm{PN1O}=\mathrm{DN} / 3[\mathrm{Nm}]$
$M_{D} \mathrm{PN} 16=\mathrm{DN} / 1.5 \quad[\mathrm{Nm}]$
M_{D} PN25 $=\mathrm{DN} / 1[\mathrm{Nm}] \quad M_{D} \mathrm{PN} 40=\mathrm{DN} / 0.5[\mathrm{Nm}]$

8.11 Installation instructions BRS ${ }^{\circledR}$ push-in joints

Applicability

These installation instructions apply to ductile iron pipes and fittings to EN 545 and DIN 28650 with restrained BRS ${ }^{\text {® }}$ push-in joints to DIN 28 603. There are separate installation instructions for the installation and assembly of other restrained joints and/or of pipes with a cement mortar coating (ZMU).

For recommendations for transport, storage and installation, see p. 60 ff . For laying tools and other accessories, see Chapter 6.
The number of joints which have to be restrained should be decided on in accordance with DVGW Arbeitsblatt GW 368 (see p. 65).

Our Applications Engineering Division should always be consulted before joints of the present type are used in culvert or bridge pipelines and before they are laid on steep slopes or in casing tubes or pipes or in utility tunnels or in unstable soil.

Construction of the joint

Important! There are three notable features by which the TYTON ${ }^{®_{-}}$ SIT-PLUS ${ }^{\circledR}$ gasket can be recognised:

The marking "TYTON®-SIT-PLUS"

Cleaning

Clean the surfaces of the seating for the gasket and the retaining groove which are indicated by the arrows and remove any excess paint (paint humps, bubbles or pimples) from them.

Use a scraper (e.g. a bent screwdriver) to clean the retaining groove.

Clean the spigot end back to the line marking. Remove any fouling and any excess paint (paint humps, bubbles or pimples).

Assembling the joint

Insert the TYTON ${ }^{\circledR}$-SIT-PLUS ${ }^{\circledR}$ gasket as specified in the installation instructions for the TYTON ${ }^{\circledR}$ push-in joint (see p. 77).

Stainless steel segment

Clean the TYTON ${ }^{\circledR}$-SIT-PLUS ${ }^{\circledR}$ gasket, make a loop in it so that it is heart-shaped, and fit it into the seating for the gasket.

Important! The point of the loop must always be between two segments

Apply a thin layer of lubricant to the TYTON ${ }^{\circledR}$-SIT-PLUS ${ }^{\circledR}$ gasket once it has been fitted into the seating.
Take the profiled identifying ring marked with a stripe of white paint and slide it onto the spigot end

Apply a thin layer of lubricant to the spigot end - and particularly to the bevel - and then insert the spigot end into the socket until it is resting against the TYTON ${ }^{\circledR}-$ SIT-PLUS ${ }^{\circledR}$ gasket and is centralised.

Fit the laying tool to the socket and the spigot end and use it to pull the spigot end of the pipe or fitting being inserted into the socket of the pipe already laid. Avoid any angular deflection when doing so.

Push the spigot end into the socket until the first marking line can no longer be seen. It is now no longer permissible for either part of the joint to be turned.

Locking

Pull or press the pipe out of the socket, e.g. with a laying tool, until the stainless steel segments engage.

Do not remove whatever is being used to lift the pipe until the joint has been fully assembled.

[^10]
Depth gauge

Once the joint has been assembled, check that the TYTON®-SIT-PLUS ${ }^{\circledR}$ gasket is correctly seated around the entire circumference with the depth gauge supplied. The gauge should penetrate into the gap between the spigot end and the socket to a uniform depth all round the circumference. The depth of penetration is usually greater in the region of the segments than in the rest of the gasket. If the depth of penetration is unduly large at one or more points, there may be a hump in the gasket and hence a possible leak at these points. If this is the case, the joint must be disassembled and the seating of the gasket checked.

Important:

Do not re-use TYTON ${ }^{\circledR}$-SIT-PLUS ${ }^{\circledR}$ gaskets from joints which have been disassembled!

Identification of the joint

As a durable means of identifying the restrained push-in joint, we supply a profiled rubber ring carrying a stripe of white paint on its circumferential surface. The ring should be positioned as shown in the illustration before the joint is assembled.

Angular deflection

Once the joint has been fully assembled, pipes and fittings can be deflected angularly as follows:
DN 80 to DN 350 - max. of 3°
DN400 to DN600 - max. of 2°

For a pipe length of $6 \mathrm{~m}, 1^{\circ}$ of angular deflection causes the axis of the pipe to lie approx. 10 cm off the axis of the pipe or fitting installed previously, i.e. $3^{\circ}=30 \mathrm{~cm}$. With 5 m long pipes, 1° corresponds to approx. 9 cm .

Note on installation

Make sure that, as a function of the internal pressure and the tolerances on joints, it is possible for extensions of up to about 8 mm per joint to occur. To allow for the travel of the pipeline when it extends when pressure is applied, joints at bends should be set to the maximum allowable angular deflection in the negative direction.

Cutting of pipes

Ensure that the pipes are suitable for cutting (see p. 82).
Copy the line markings from the original spigot end to the new spigot end which has been cut.

Disassembly

Push the pipe into the socket until it is in abutment.
Apply lubricant to the disassembly plates and, using the striking block. drive them into the gap between the socket and the pipe all round. Then disassemble the joint with the laying tool or the dissembling clamp.

Striking block with disassembly plates

A dismantling tool consists of a striking block and the number of disassembly plates shown in the table below.

DN	80	100	125	150	200	250	300	350	400	500	600
Number of plates	4	4	5	6	8	10	12	14	16	19	23

8.12 Installation instructions Bolted gland joints

Applicability

These installation instructions apply to ductile iron fittings to EN 545 with bolted gland joints to DIN 28602.
For recommendations for transport, storage and installation, see p. 60.
For laying tools and other accessories, see Chapter 6.

Construction of the joint

Cleaning

Clean the surfaces of the seating for the gasket which are indicated by the arrows and remove any excess paint (paint humps, bubbles or pimples) from them. Use a tool such as a wire brush to clean the seating for the gasket.

Clean the front pressure-applying face of the bolted gland ring thoroughly.

Clean the spigot end for a length of at least 300 mm . Remove any fouling and any excess paint (paint humps, bubbles or pimples).

Assembling the joint

Slide the bolted gland ring and the gasket onto the spigot end
Important! Do not use any lubricant!

Using a piece of lifting equipment, insert the spigot end into the socket, centralise it and check the depth of insertion. Press the gasket into the sealing chamber to a uniform depth all round.

Slide the bolted gland ring in behind the gasket and centralise it with two hardwood wedges, which can easily be fitted in at the top between the bolted gland ring and the spigot end. When the bolted gland ring is accurately centralised, it is then easy for the tee-head bolts to be inserted.

Insert the tee-head bolts through the flange and the bolted gland ring. Tighten the nuts as far as you can finger-tight, evenly all round. Then tighten the nuts in sequence with a ring spanner, always tightening two diametrically opposed nuts at a time by about half a turn to one full turn

The gasket has been correctly compressed when the bolted gland ring has been pressed into the gasket to a depth of at least 6 mm .

How deep it has been pressed in can be found by measuring the overall depth of the bolted gland ring, and the depth from the outer face of the bolted gland ring to the gasket once the bolts have been tightened. The depth for which it is pressed in should be as even as possible all round for the given bolted gland joint.

At least three measurements therefore have to be made at each joint. Check the correct depth of insertion again.
Re-paint the tee-head bolts and the nuts with a standard bitumen paint.

Angular deflection

Once the joint has been assembled with the pipe centralised, pipes and fittings can be deflected angularly by

Up to	DN $500-$	\max. of 3°
	DN $700-$	max. of 2°
	DN $1,000-$	max. of 1.5°

For a pipe length of $6 \mathrm{~m}, 1^{\circ}$ of angular deflection causes the axis of the pipe to lie approx. 10 cm off the axis of the pipe or fitting installed previously, e.g. $3^{\circ}=30 \mathrm{~cm}$. With 5 m long pipes, 1° corresponds to approx. 9 cm .

Cutting of pipes

Ensure that the pipes are suitable for cutting (see p. 82)

Disassembly

Unscrew the nuts and slide back the bolted gland ring. Pull the spigot end out of the socket.

8.13 Cutting of pipes

Suitability for cutting (6 mpipes)

Up to and including a nominal size of DN 300, the pipes supplied can be cut, in the region of the barrel, at points more than 1 m away from the socket, to enable a spigot end for a joint to be formed. Above a nominal size of DN 300 only pipes which carry a continuous longitudinal stripe can be cut. Pipes of this kind ("Schnittrohre" or cuttable pipes) have to be ordered separately. An additional identifier for a cuttable pipe is an "SR" marked on the end-face of the socket.

Suitability for cutting (5 m pipes)

Up to and including a nominal size of DN 300, the pipes supplied are within the permitted tolerance range, and can therefore be cut, in the region of the barrel, over 2/3 of their length measured from the spigot end.

Above a nominal size of DN 300 the diameter of the pipes should be checked before they are cut (use a steel measuring tape to compare the circumference of the pipe at the spigot end and at the intended cutting point). Specially marked dimensionally accurate (cuttable) pipes of the kind available as standard up to and including DN 300 can also be ordered. The marking is a red longitudinal strip (approx. 0.5 m long) extending over the socket to the barrel.

Tools

The best way of cutting ductile iron pipes is with cutters using abrasive discs and powered in a variety of ways, e.g. by compressed air, electric motors or petrol engines.

The cutting disc we recommend is the C 24 RT Spezial type made of silicon carbide. These are cutting discs for stone but have proved successful in practice for cutting ductile iron pipes. Protective goggles and respiratory protection must be worn when cutting pipes with a cement mortar coating or lining. All swarf must be carefully removed from inside the pipe.

With pipes of fairly large nominal sizes it may happen that the new spigot ends produced are slightly oval after the pipes have been cut. If this happens, the spigot ends should be re-rounded with suitable devices applied to the inside or outside of the pipe, e.g. hydraulic jacks or re-rounding clamps.
The device should not be removed until after the joint has been fully assembled.

Grinding of cut ends

The cut ends of pipes shortened on site must be bevelled with a grinding disc to match the original spigot ends.

The bevelling should be done as shown in the diagrams.

Repaint the bare metal surface with a paint corresponding to the external protection which the pipe has. A quick drying finishing layer which complies with the requirements of the German Foodstuffs Law is suitable for this purpose.

To speed up the drying process, it is advisable to warm first the pipe ends, and then the paint when it has been applied, with a gas flame. Then copy the line markings on the original spigot end to the new spigot end which has been cut.

Dimensions for line markings

	DN	80	100	125	150	200	250	300	350
Form A Standard socket	X	\mathbf{Y}	89	73	76	79	86	89	92
		82	85	90	95	95			

	DN	400	500	600	700	800	900	1,000
Form A Standard socket	X	95	105	105	135	145	160	170
Form B	Y	108	118	118	148	158	173	183
Long socket	Y	-	-	-	148	157	167	177

No line marking is used on pipes with VRS ${ }^{\circledR}$-T joints. In place of it, a welded bead has to be applied to cut ends of pipes of this kind. On this point see the installation instructions for $\mathrm{VRS}^{\oplus}-\mathrm{T}$ joints (see p. 71 ff) and the technical recommendations for welding on the next page.

For cutting pipes with a cement mortar coating, the directions given from p. 69 should also be followed.

8.14 Technical recommendations for manual metal arc welding

Applicability

Welding work can be done on ductile iron pipes to EN 545 in the following cases:

- on water pipelines having allowable operating pressures (PFA) of up to 16 bars
- for welding on DN 2" ductile iron or steel connections
- for welding on DN 80 to DN 300 ductile iron or steel outlets
- puddle flanges for building pipes into structures
- welded beads for restrained push-in joints

These recommendations do not apply to sand-cast fittings and pipes or to grey cast iron pipes.

Pipes with a minimum wall thickness of less than 4.5 mm must not be welded!

Process and electrodes

The process used should be manual metal arc welding using nickel-based stick electrodes, preferably ones complying with EN ISO 1071.
The recommended electrode types are for example:
Castolin 7330-EC, UTP FN 86, ESAB OK 92.58, Gricast 31 or 32

Basically, the following standards of the German Welding Society (DVS) also apply:

DVS 1502, Parts 1 \& 2
DVS 1148

The welders used should be qualified under DVS 1148
${ }^{1)}$ Please consult our Applications Engineering Division before you carry out any welding work for the first time.

Preparing for welding work

When welding is being done, the temperature of the pipe wall must not be less than $+20^{\circ} \mathrm{C}$
The workplace must be dry.

The area to be welded must be bright metal. Remove any fouling or zinc coatings by filing or grinding

Pinholes should not be welded over. They must be ground out down to solid metal and filled with weld metal. Connectors should be matched to the outside diameter of the barrel of the pipe in such a way that, if at all possible, the gap does not exceed 0.5 mm

Execution of welding work

Type of current

Either AC or DC can be used for welding work. Follow the guidelines for use issued by the electrode manufacturer.

Welding parameters

The current levels and rates of deposition specified by the electrode manufacturer should be taken as the guideline values

Preheating

Preheating is generally an advantage. The area to be welded should be preheated as detailed in Table 1 before the tack welding and before the root pass is welded.

Table 1

Conditions for crack-free welds on ductile iron pipes

Making of weld	In at least two passes (inc. for pipe to connection joints)		
Thickness of pipe wall (actual)	Not filled with water *)		Filled with flowing water
	Not cement-mortar lined	Cement-mortar lined	Cement-mortar lined
$24.7 \ldots 6 \mathrm{~mm}$	bei $20^{\circ} \mathrm{C}$	At $20^{\circ} \mathrm{C}$	Not allowed
$6 \ldots 10 \mathrm{~mm}$	bei $20^{\circ} \mathrm{C}$	At $20^{\circ} \mathrm{C}$	At $20^{\circ} \mathrm{C}$
$10 \ldots 12 \mathrm{~mm}$	Preheat to $150^{\circ} \mathrm{C}$	At $20^{\circ} \mathrm{C}$	At $20^{\circ} \mathrm{C}$
$>12 \mathrm{~mm}$	Preheat to $150^{\circ} \mathrm{C}$	Preheat to $150^{\circ} \mathrm{C}$	Preheat to $150^{\circ} \mathrm{C}$

${ }^{*}$) Also applies to partly filled pipelines when the areas for welding are above the water table
*) Preheating is advisable when the pipe wall temperature is below $20^{\circ} \mathrm{C}$

Tack welding

Fix the parts to be welded in place with suitable clamping devices. They must be tack welded at at least two points. The angles of the tack welds should be as shallow as possible so that they can be welded over; this can be achieved by grinding them if necessary. Check the tack welds to ensure they are free of cracks. Any cracks in tack welds must be ground out.

Welding

Any weld must be made as far as possible in a single operation. Interruptions in the welding work should be avoided. Make sure that the preheating temperature is maintained during the welding. If there are interruptions in the welding work, preheat again as in Table 1 before resuming welding.

Welding on of DN 2" ductile iron or steel branch connections

Branch connections are supplied in a ready-to-weld state and can be welded on with fillet welds once the zone for the welding has been prepared and the branch connection has been matched to the outside diameter of the main pipe. The weld should be made in two passes. The a dimension of the first pass (root pass) should be 3 mm . The second pass should be a weave pass between the main pipe and the branch connection over the top of the root pass. The finished weld should be flat to slightly concave. The test of the weld for leaktightness should be carried out before the hole is drilled in the main pipe. On water pipelines it should be made at the system test pressure (STP), which is the nominal pressure +5 bars.

Welding on of DN 80 to DN 300 ductile iron or steel outlets

The nominal size of the outlets may not be more than half the nominal size of the main pipe
Outlets are to be welded on with fillet welds. The welding should generally be done in two passes. The a dimension of the first pass (root pass) should be at least 3 mm . The second pass should be first a weave pass between the root pass and the main pipe and then a weave pass between the root pass and the outlet. The finished weld
should be flat to slightly concave and its a dimension should be $0.7 s_{-05}^{+2}$ ($s=$ thickness of the outlet). On outlets of DN 250 and DN 300 nominal size, a final pass may also be welded to give the a dimension

It may be an advantage for the welding-on of outlets of fairly large sizes to be done with a buffer layer. The test of the weld for leaktightness should be carried out before the hole is drilled in the main pipe. On water pipelines it should be made at the system test pressure (STP), which is the nominal pressure +5 bars
When new pipelines are being laid it is advisable for outlets to be welded on out of the pipeline trench. In this case the hole in the main pipe can be drilled before the outlet is welded on. The internal pressure test on the outlet can then be carried out together with the pressure test on the pipeline.

Welding on of ductile iron or steel puddle flanges

Pipes with puddle flanges are used to allow pipes to be built into structures. By welding it is possible for puddle flanges to be fastened in place at any desired point along the barrel of a pipe.
Puddle flanges are supplied in annular sections and should be fitted tightly to the pipe.

Welding

Puddle flanges should be welded on with at least two-pass fillet welds and the a dimension of the welds should not be less than 4 mm . On pipes of fairly large sizes with corresponding wall thicknesses it is advisable for a buffer layer to be used.

The length of the weld should be decided on in line with the operating requirement (allowable thrust $\mathrm{T}_{\mathrm{zul}}=130 \mathrm{~N} / \mathrm{mm}^{2}$).
After being welded on, annular sections should be welded together.

Application of welded beads

When pipes with positive locking restrained push-in joints are cut on site, the welded beads have to be applied to the new spigot ends. The procedure, accessories and dimensions for this are given in the installation instructions under "Cutting of pipes".

Heat treatment after welding

No heat treatment of welded joints or welded parts is required after they have been welded.
The area of the weld should be cleaned once it has cooled and, after checking, should be carefully repainted with a protective paint such for example as a bitumen-based one.

Checking of welds

Welds should generally undergo a visual inspection and, where necessary, a non-destructive test for surface flaws and cracks. Welds which are not called upon to be leaktight, such as those fixing puddle flanges for example, should be randomly checked for surface flaws.

Flaws, such as surface pores or cracks in or next to the weld, which are found in the course of checking or testing should be fully ground out before they are repaired. Flaws may only be repaired once.

8.15 Pressure testing

Under EN 805, pipelines have to be subjected to an internal pressure test, For water pipelines, the codes governing the execution of this pressure test are EN 805 or DVGW Arbeitsblatt W 400-2.

Test sections

It may be necessary for pipelines of quite a considerable length to be divided into sections. The test sections should be decided on in such a way that

- the test pressure is reached at the lowest point of each test section.
- at least 1.1 times the system test pressure (MDP) is reached at the highest point of each test section.
- the amount of water required for the test can be supplied and drained away.
- the maximum length of a test section is not more than $2.5-3 \mathrm{~km}$.

The pipeline should be vented as thoroughly as possible, using "pigs" if necessary, and should be filled with drinking water from the owest point.

Backfilling and restraint

If necessary, pipelines must be covered with backfill material before the pressure test to avoid any changes in length. Backfilling around the joints is optional.

At their ends and at bends, branches and tapers, non-restrained pipelines must be anchored to resist the forces generated by the internal pressure. The thrust blocks required for this purpose should be dimensioned as directed in GW 310.

There is no need for thrust blocks to be installed for restrained systems provided that GW 368 has been observed in deciding on the lengths to be restrained

There is no point in carrying out a pressure test against a closed shut-off valve. The temperature at the outer wall of the pipeline should be kept as constant as possible and must not exceed $20^{\circ} \mathrm{C}$.

Filling the pipeline

It is useful for the pipeline to be filled from the lowest point so that the air contained in it is able to escape easily from venting points of adequate size provided at the highest points of the pipeline.

We recommend the following filling rates in $1 / \mathrm{s}$

DN	100	150	200	250	300	400	500	600	700	800	900	1,000
Filling rate	0.3	0.7	1.5	2	3	6	9	14	19	25	32	40

For drinking water pipelines, initial disinfection should be carried out in conjunction with the pressure test. This requires a concentration of at least 50 mg of chlorine per litre of water. Depending on how dirty the pipeline is, the level of chlorine may be increased to up to 150 mg per litre of water
The relationship between the amount of water added and the increase in pressure obtained may serve as an indication of any leaks or of inadequate venting. As the pressure increases, the water consumption should therefore be noted bar by bar.

Water consumption for 1 bar

bar	mm	in litres
$0-1$		
$1-2$		
$2-3$		
$3-4$		
$5-6$		

Where a pipeline has been properly laid and is properly vented, the amount of water which needs to be pumped in per bar of increased pressure is approximately constant. Allowing for the compressibility of water and the elastic properties of the pipes, this amount is (theoretically) approximately 50 ml per cubic metre of space within the pipeline per bar. In practice, this figure is around 1.5 to 2 times higher because air trapped in the joints of pipes and fittings and in valves has to be compressed.
The Table shows the amounts of water required, in litres per bar of increased pressure, for pipeline lengths from 100 to $1,000 \mathrm{~m}$, including a 100\% allowance for trapped air.

DN	Amounts of water in litres per bar of increased pressure. for pipeline lengths [m] given in the column headings									
	100	200	300	400	500	600	700	800	900	1,000
80	0.05	0.09	0.14	0.19	0.24	0.28	0.33	0.38	0.42	0.47
100	0.07	0.13	0.20	0.26	0.33	0.39	0.45	0.52	0.59	0.65
125	0.12	0.24	0.36	0.48	0.60	0.72	0.84	0.96	1.05	1.20
150	0.18	0.35	0.53	0.70	0.87	1.05	1.22	1.40	1.54	1.75
200	0.32	0.64	0.97	1.28	1.60	1.93	2.25	2.55	2.90	3.20
250	0.52	1.04	1.57	2.10	2.60	3.15	3.65	4.20	4.70	5.20
300	0.78	1.56	2.35	3.15	3.90	4.67	5.45	6.25	7.05	7.80
350	1.06	2.12	3.20	4.25	5.30	6.38	7.43	8.50	9.55	10.60
400	1.44	2.90	4.30	5.80	7.20	8.65	10.10	11.55	13.00	14.40
500	2.35	4.70	7.05	9.40	11.80	13.10	16.20	18.80	21.10	23.50
600	3.45	7.00	10.50	14.00	17.15	21.00	24.50	28.00	31.50	35.00

Performing a pressure test

The following procedures for performing a pressure test on ductile iron pipes are described in DVGW Arbeitsblatt W 400-2:

- standard procedure (for pipes of all nominal sizes, with or without a cement mortar lining)
- shortened standard procedure (for pipes of nominal sizes up to DN 600 with a cement mortar lining)

We describe below the two procedures which are most frequently followed, the standard procedure and the shortened standard procedure.

In both these procedures the level of test pressure is as follows:

- for pipelines with an allowable operating pressure of up to 10 bars: $1.5 \times$ nominal pressure
- for pipelines with an allowable operating pressure of above 10 bars: nominal pressure +5 bars.

The standard procedure

The standard procedure is carried out in three phases:

- preliminary test
- pressure drop test
- main test

Preliminary test

The purpose of the preliminary test is to saturate the cement mortar lining and to extend the pipeline. To do this, the test pressure is kept constant for a period of 24 hours by pumping in more water as and when required. If any leaks are found or any changes in length exceeding the allowable limits occur, the pipeline must be de-pressurised and the reason found and remedied.

Pressure drop test

The purpose of the pressure drop test is to establish that the pipeline is free of air. Pockets of air in the pipeline may result in incorrect measurements and may mask small leaks.

A volume of water ΔV sufficient to cause a drop in pressure Δp of at least 0.5 bars is drawn off from the pipeline. The volume of water $\Delta \mathrm{V}$ drawn off is measured. The pipeline must then be re-pressurised to the test pressure.

The pipeline is considered to have been adequately vented if ΔV is no greater than the allowable change in volume $\Delta \mathrm{V}_{\text {zul }}$. If it is greater, then the pipeline must be vented again.
$\Delta V_{z u l}$ is calculated as follows:
$\Delta V_{z u l}=1,5 \cdot a \cdot \Delta p \cdot L$
$\Delta V_{\text {zul }}=$ allowable change in volume $\left[\mathrm{cm}^{3}\right]$
$\Delta p=$ measured drop in pressure [bar]
$L \quad=$ length of the section tested [m]
$a=$ pressure constant characteristic of the size of pipe [cm³/(bar x m)]
\rightarrow see Table below

DN	a	DN	a
80	0.314	400	9.632
100	0.492	500	15.614
125	0.792	600	23.178
150	1.163	700	32.340
200	2.147	800	43.243
250	3.482	900	55.679
300	5.172	1,000	69.749
350	7.147	1.200	103.280

Main test

Following the pressure drop test, the main test is then carried out.

The duration of the test is as follows:

Up to	DN 400	3 h
	DN 500 to DN 700	12 h
more than	DN 700	24 h

The test conditions are considered to have been met if the pressure loss at the end of the test is no higher than is specified below:

Nominal pressure
10
16
more than 16

Test pressure
15 bar
21 bar
PN + 5 bar

Max. pressure loss
0.1 bar
0.15 bar
0.2 bar

Test report

A test report should be produced. Templates for test reports are included in DVGW Arbeitsblatt W 400-2. The details required, such as the following, can be seen in these templates:

- description of the pipeline
- test parameters
- description of the performance of the test
- findings during the test
- note indicating report has been checked

The shortened standard procedure

The advantage of the shortened standard procedure is above all that it saves an enormous amount of time. The time required is only about 1.5 hours.

The shortened standard procedure is carried out in three phases:

- saturation phase
- pressure drop test
- leak test

Saturation phase

To achieve a high level of saturation, the test pressure is kept constant for half an hour by pumping in more water as and when required. The key factor in saturation is first and foremost the level of the test pressure. Unduly low pressure cannot be compensated for by increasing the length of the saturation phase.

Pressure drop test

The purpose of the pressure drop test is to establish that the pipeline is free of air. Pockets of air in the pipeline may result in incorrect measurements and may mask small leaks.

A volume of water $\Delta V_{z u l}$ (see below) is drawn off from the pipeline at the test pressure. The resulting drop in pressure Δp is measured. This becomes the allowable drop in pressure $\Delta p_{z u l}$, in the subsequent leak test. The pipeline must be re-pressurised to the test pressure after the pressure drop test.
$\Delta \mathrm{V}_{\mathrm{zul}}$ is calculated as follows:
$\Delta V_{z u l}=(D N \cdot L) /(100 \cdot k)$

$\Delta \mathrm{V}_{\text {zul }}$	$=$	allowable change in volume $\left[\mathrm{cm}^{3}\right]$
L	$=$	length of the section tested $[\mathrm{m}]$
$100 \times k$	$=$	proportionality factor, $\mathrm{k}=1 \mathrm{~m} / \mathrm{cm}^{3}$

The pipeline is considered to have been adequately vented if, when the volume of water $\Delta \mathrm{V}_{\text {zul }}$ is drawn off, the drop in pressure is equal to or greater than the minimum levels specified for Δp in the table below.

Nominal size DN	Minimum drop in pressure Δp [bar]
80	1.4
100	1.2
150	0.8
200	0.6
300	0.4
400	0.3
500	0.2
600	0.1

Leak test

The pipeline is considered not to leak if the loss of pressure Δp goes down at a constant rate over equal intervals of time and if, over the duration of the leak test, it does not exceed the level $\Delta p_{\text {zul }}$ found in the pressure drop test. The duration of the test is one hour.

Test report

A test report should be produced. Templates for test reports are included in DVGW Arbeitsblatt W 400-2. The details required, such as the following, can be seen in these templates:

- description of the pipeline
- test parameters
- description of the performance of the test
- findings during the test
- note indicating report has been checked

8.16 Disinfection of drinking water pipelines

Disinfection needs to be carried out both on the drinking water itself and on the infrastructure used to supply it. There are a variety of disinfectants and different methods of disinfection which can be used to produce the disinfectant effect. Only when satisfactory test results have been obtained is the disinfection of a pipeline considered to have been successfully completed.

General

Water supply companies have to provide drinking water which is in a satisfactory state hygienically. This requirement is laid down in the German Foodstuffs and Consumer Goods Law, the Federal Epidemic Control Law and the European Drinking Water Directive. Under these codes, drinking water must be of a nature such that its consumption does not harm public health. A prerequisite for this is that the drinking water pipelines are in a hygienically satisfactory condition.
This is achieved by disinfecting the pipelines.
Disinfection covers all the measures which reduce the number of bacteria in such a way that they do not adversely affect the quality of the water transported in the pipelines.
Such measures do relate to the drinking water but they also relate to the infrastructure used to supply it.
Under the Foodstuffs and Consumer Goods Law, pipelines are "requisites which are used in distributing drinking water and which thus come into contact with it".
Drinking water pipelines must be disinfected in accordance with DVGW Arbeitsblatt W 291. For ductile iron pipes with a cement mortar lining, it is useful for disinfection to be carried out at the same time as the pressure test.
When drinking water pipelines are being laid, the greatest possible care should be taken at the outset to stop pipes which will later be carrying water from getting dirty.
You should stop pipes from getting dirty as a result of actions by the personnel, as a result of items of equipment used (dirty rags used to wipe out sockets, etc.) or as a result of pollutants in the air (e.g. oily exhaust fumes from two-stroke pipe cutters). The ends of pipelines should be sealed off tightly in such a way that neither groundwater nor dirty water nor animal life can get in.

Disinfection is essential in the following cases:

- before drinking water pipelines are put into service
- after repairs and other work on the pipeline network
- if the drinking water becomes stagnant
- if drinking water pipelines become polluted with bacteria

Flushing out of drinking water pipelines

Under DVGW Arbeitsblatt W 291, flushing out with drinking water is the simplest means of reducing the concentration of bacteria and is normally all that is needed for pipelines of small nominal sizes up to DN 150. It is possible that this will make any additional disinfection unnecessary.

When flushing out takes place, ensure that the flow velocity is high enough (at least $1.5 \mathrm{~m} / \mathrm{s}$). The flushing action can be boosted by simultaneous pigging or by flushing out with a mixture of air and water.

The volume of water available to flush out the pipeline should be at least 3 to 5 times the capacity of the pipeline (for pipes of DN 150 size
and below) or 2 to 3 times the capacity of the pipeline (for pipes of DN 200 size and above).

Attention should be paid to the following points when flushing out pipelines:

- You should only use items of equipment, such as hoses, which are suitable for drinking water and have been flushed out and, if at all possible, disinfected
- Sloping pipelines should be flushed out from the top downwards.
- Any air which is injected should be free of oil and dust.
- Water from the section flushed out must not get into the supply network or to consumers.
- There must not be any non-allowable drop in pressure on the pipeline network.
- It must not be possible for dirty water to be sucked back into the pipeline when it is being drained.
- After flushing with a mixture of air and water, the pipeline must be fully vented.

Disinfectants

The choice of disinfectant should be made on the basis of the local conditions. These include for example whether the disinfectant can be properly handled and will be properly effective and whether it can be satisfactorily disposed of.
The following are the disinfectants most frequently used for disinfecting drinking water pipelines:

Sodium hypochlorite, potassium permanganate, hydrogen peroxide and chlorine dioxide.

Due to the checks required under the German Hazardous Materials Regulations, a critical view has to be taken of the use of disinfectants containing chlorine. If you cannot manage without a disinfectant, you should use mainly hydrogen peroxide or potassium permanganate. Both of these can be used as a working solution in a concentration which is below the threshold for hazardous materials (see Schlicht, issue $2 / 2003$ of the magazine bbr).

Sodium hypochlorite (NaOCl)

Sodium hypochlorite is the most widely used disinfectant.
It is commercially available as a sodium hypochlorite solution (chlorine bleach solution).
The solution should contain at least 12\% of free chlorine (150 to 160 g of chlorine per litre). Note that when the solution is stored there is a steady fall in the free chlorine
content. When solution has been in store for any great length of time, the chlorine content should therefore be checked.
A well-tried disinfectant solution for cast iron pipes with a cement mortar lining is for example a concentration of 50 mg of chlorine per litre of water.

For rechlorination, we recommend using a higher concentration (up to about 150 mg of chlorine per litre of water).
The pH of the sodium hypochlorite solution is between 11.5 and 12.5 When a pipeline is being disinfected, such a solution necessarily increases the pH of the water being treated.
We do not advise reducing the pH by mixing acids with the solution because this may cause chlorine gas to be released and may cause an accident. Mixing with very hard water may result in the precipitation of calcium carbonate.

Disinfectant solutions containing chlorine must always be treated to make them safe before they are allowed to make their way into the sewers or any waterways or bodies of water. This can be done by dilution or by chemical neutralisation with sodium thiosulphate. Dechlorination is also possible by filtration through activated carbon filters.

Hydrogen peroxide ($\mathrm{H}_{2} \mathrm{O}_{2}$)

Hydrogen peroxide is a colourless liquid which mixes well with water. The commercially available solutions used have concentration of 35% and 50\%.
Hydrogen peroxide gradually breaks down into water and oxygen and this process is speeded up by the effects of heat, light and dust and by heavy metal compounds and organic materials. The solution must therefore be stored where none of these things can affect it.
Disinfectants containing hydrogen peroxide solutions are commercially available under a variety of brand names. Commercially available hydrogen peroxide solutions are always diluted before being used for disinfection. They should not be used on site in a concentration of more than 5%. Concentrations of 150 mg per litre of water and standing times of 24 hours have proved suitable for newly laid pipelines. Unlike solutions containing chlorine, hydrogen peroxide can be drained into the sewers at these concentrations. There is normally no need for the solution to be treated before it is drained into the sewers.

Potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$

Potassium permanganate is available in the form of violet crystals and has a virtually unlimited shelf life in this form. Its solubility in water is very much dependent on temperature ($28 \mathrm{~g} / \mathrm{litre}$ of water at $0^{\circ} \mathrm{c}, 91 \mathrm{~g} / l i t r e ~ o f ~$ water at $30^{\circ} \mathrm{C}$).
Depending on its concentration, the solution is coloured as follows: deep violet for strong solutions, reddish violet for medium strength solutions and pink for weak solutions.

Being easy to work with and dispose of, potassium permanganate has been increasingly widely used for disinfection in recent years.
Disinfection with a potassium permanganate solution is carried in much the same way as with chlorine, except that 3 to 4% concentrations are used in this case.
The concentration used should be about 10 mg of potassium permanganate to 1 litre of water. Potassium permanganate solutions can be completely reduced by adding ascorbic acid (vitamin C). This can be recognised by a change in the colour of the solution from violet to colourless.

Chlorine dioxide (ClO_{2})

Chlorine dioxide is a gas which is freely soluble in water and which is produced from two separate components, namely a sodium chlorite solution and sodium peroxide sulphate. Always follow the manufacturer's instructions when working with the ready-made solution. The container for the concentrated chloride dioxide stock solution (0.3 weight\%) must be such that no chlorine dioxide gas is able to escape.

Chemical properties

In well sealed containers, the individual components for producing chlorine dioxide will remain stable and can be stored almost indefinitely. Chlorine dioxide itself is produced by mixing component 1 and component 2. Chlorine dioxide may break down into ionic end products when acted on by light and heat. The ready-mixed solution should therefore be stored in a cool, dark place. Under these conditions, a 0.3% aqueous
solution of chlorine dioxide of neutral pH can be kept for around 40 days at $22^{\circ} \mathrm{C}$.

Stock solution

An aqueous solution of 0.3% or $3 \mathrm{~g} /$ litre of ClO_{2}; this is added to the water to obtain the desired concentration of disinfectant.

Disposal

When water distribution systems are being disinfected, the excess chlorine dioxide and the chlorite, one of the by-products of its chemical reaction, must be de-activated (e.g. with calcium sulphite filters or activated carbon filters) before they are drained into the sewers or an open receiving water.

Disinfection procedures

Stand-in-place procedure

In this procedure disinfection is achieved by leaving the solution to stand in the pipeline for a fairly long period (not less than 12 hours). It is important in this procedure to ensure that the proportion in which the disinfectant solution is mixed with the water remains constant.
Infeed of the disinfectant solution must not be stopped until the entire pipeline is filled with it.
Of course, no disinfectant solution must be allowed to get into any part of the pipeline network which is in use!
While the solution is left to stand in the pipeline, you should also operate any gate valves or hydrants so that they too are disinfected.
If there are very stubborn bacterial deposits in the pipeline it will need to be disinfected more than once. The concentration of the disinfectant solution may be increased in this case.
It is also essential for the pipeline to be flushed out again with an adequate volume of water at a high flow velocity.
The disinfection process must be repeated until no microbiological contamination is found in the samples taken.
When sodium hypochlorite is used, there should still be evidence of chlorine in the water at the end of the stand-in-place period.

Flow procedure

With pipelines of large nominal sizes, it may be advantageous for the pipelines to be flushed out and disinfected at the same time over quite a long period of time.
If this is done, the concentration of the disinfectant in the water flowing out must be checked repeatedly in the course of the flushing-out process.
The total pipeline content should be replaced to 2 to 3 times.

Disinfection during the pressure test

The combining of the disinfection and pressure testing of a pipeline has proved to be a successful technique, the water which is used for the pressure testing being water which already has disinfectant admixed with it. The high pressure forces the disinfectant solution into the pores of the cement mortar lining. With this technique it is essential for the pipeline being disinfected to be isolated from all pipelines which are in service.

Disinfection measures when work is done on existing pipelines

When repairs are made or new pipes are connected in at a later date, there are often compelling reasons why a section of a network has to go back into service very quickly, meaning that disinfection cannot be carried out by the procedures described above.
Other measures then have to be taken to ensure that the drinking pipeline will be in a satisfactory state hygienically once the work has been completed.

For instance, the parts which are installed may already have been washed in clean water or disinfectant solution. Once the work is completed the pipeline should then be flushed out with water at a suitably high flow velocity.
Should any additional disinfection of the pipeline be necessary, care must be taken to see that no disinfectant solution gets into any of the adjoining parts of the system.
The pipeline may not be put back into operation until it has been thoroughly flushed out.

Disposal

Disinfectant solutions must be disposed of without any harm being done to the environment. Basically, all the relevant DIN standards and DVGW Arbeitsb/ätter must be observed. Particular note should be taken of DVGW Arbeitsblatt W 291 and the European Drinking Water Directive.
Close attention should also be paid to all product-specific information from disinfectant manufacturers, to the safety data sheets and to accident prevention regulations.

Microbiological checks and release for use

Once pipelines have been disinfected, i.e. once the flushing-out has been completed, water samples must be taken from them for microbiological examination. The samples should be taken from the ends of the pipelines and, where the pipelines are of any great length, from individual sections as well.
When taking samples, it is imperative that you take the steps specified in the standards document known as "German Standard Methods for the Examination of Water. Wastewater and Sludge" (DEV). These include the draining, cleaning and flame sterilisation of the valves used for sampling.
Under the existing directives and guidelines, disinfection can be regarded as successful if microbiological examination of the water shows that the colony count does not exceed the benchmark figure of 100 per ml of water. At the same time, the water must not contain any Escherichia coli (E. coli) or any coliform bacteria. If either of these requirements is not met, disinfection of the pipeline must be repeated

Only when the results of the appropriate microbiological examinations show that everything is microbiologically safe can the drinking water pipeline be released for use. In all examinations, the guidelines laid down in the European Drinking Water Directive must be followed.

The disinfection process

To sum up, you must observe the following steps in your procedure when disinfecting drinking water pipelines (see also DVGW Arbeitsblatt W 291):

- Flush out the pipeline
- Disinfect the pipeline
- Drain off and if necessary neutralise the disinfectant solution after the appropriate stand-in-place time
- Flush out the pipeline
- Take samples and perform a microbiological examination

Only when the tests give satisfactory results can the pipeline which has been connected in be put into service.
In view of the important function performed by the disinfection of drinking water pipelines, it is essential for the process described above to be adhered to exactly.

8.17 Hydraulic calculation of drinking water pipelines

Calculations are needed to ensure that a pipeline will perform properly in hydraulic terms. High flow velocities result in considerable pressure losses. Particularly when pipelines are long, the flow velocity has a major impact on the economics of the supply system as a whole.
Low flow velocities result in the water standing still (stagnating) for long periods. This being the case, it has to be ensured that there is a sufficiently high exchange of water for hygienic reasons (to prevent turbidity and microbial contamination).

The texts governing the hydraulic dimensioning of water pipelines are DVGW Arbeitsblatt GW 303-1 and DVGW Arbeitsblatt GW 400-1.
The optimum flow velocities as a function of the type of pipeline (main pipeline, connecting pipeline, etc.) are specified in GW 400-1. These are mainly between $1.0 \mathrm{~m} / \mathrm{s}$ and $2.0 \mathrm{~m} / \mathrm{s}$.
GW 303-1 has something to say about, amongst other things, the operating roughness (k2, which is referred to as ki - integral roughness - in it) of pipeline networks. What are subsumed under integral roughness are all the features of a pipeline or pipeline network which set up a resistance to flow, such as the roughness of the walls, socket transitions, deposits, and the effect of components inserted in pipelines (valves, bends, tapers, etc.). The following standard values have been laid down which apply equally to all pipeline materials:
$\mathrm{ki}=0.1 \mathrm{~mm}$ for trunk mains and feeder mains which run for a considerable distance
$\mathrm{ki}=0.4 \mathrm{~mm}$ for pipelines which run largely for a considerable distance
$\mathrm{ki}=1.0 \mathrm{~mm}$ for new networks; this is an approximation which takes into account a high level of interconnection.

From the tables given below it is possible to make a rough estimate of the flow velocity (V) and the pressure losses (I). as a function of the DN, integral roughness (ki) and the volumetric flow rate (O)

A calculation tool for the hydraulic calculation of ductile iron pipes is available for downloading free of charge at www.eadips.org

Q [1/s]	DN 80			
	v [m/s]	$\begin{gathered} k_{1}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{1}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{1}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
0.50	0.10	0.232	0.258	0.303
0.60	0.12	0.320	0.360	0.427
0.70	0.14	0.420	0.477	0.572
0.80	0.16	0.532	0.610	0.737
0.90	0.18	0.656	0.758	0.924
1.00	0.20	0.791	0.992	1.130
1.25	0.25	1.181	1.400	1.738
1.50	0.30	1.641	1.975	2.474
1.75	0.35	2.171	2.645	3.339
2.00	0.40	2.770	3.412	4.334
2.25	0.45	3.438	4.274	5.457
2.50	0.50	4.173	5.233	6.710
2.75	0.55	4.976	6.287	8.091
3.00	0.60	5.846	7.437	9.601
3.25	0.65	6.784	8.683	11.240
3.50	0.70	7.788	10.030	13.010
3.75	0.75	8.859	11.460	14.910
4.00	0.80	9.996	13.000	16.930
4.25	0.85	11.200	14.630	19.090
4.50	0.90	12.470	16.350	21.370
4.75	0.94	13.810	18.170	23.780
5.00	0.99	15.210	20.090	26.330
5.25	1.04	16.680	22.100	29.000
5.50	1.09	18.210	24.210	31.800
5.75	1.14	19.810	26.410	34.720
6.00	1.19	21.480	28.710	37.780
6.25	1.24	23.210	31.100	40.970
6.50	1.29	25.010	33.590	44.280
6.75	1.34	26.870	36.180	47.730
7.00	1.39	28.800	38.860	51.300
7.25	1.44	30.800	41.640	55.010
7.50	1.49	32.860	44.510	58.840
7.75	1.54	34.980	47.480	62.800
8.00	1.59	37.180	50.540	66.890
8.25	1.64	39.430	53.700	71.100
8.50	1.69	41.760	56.960	75.450
8.75	1.74	44.150	60.310	79.930
9.00	1.79	46.600	63.760	84.530
9.25	1.84	49.120	67.300	89.270
9.50	1.89	51.710	70.940	94.130
9.75	1.94	54.360	74.670	99.120
10.00	1.99	57.070	78.500	104.200
10.25	2.04	59.860	82.430	109.500
10.50	2.09	62.710	86.450	114.900
10.75	2.14	65.620	90.570	120.400
11.00	2.19	68.600	94.780	126.000
11.50	2.29	74.750	103.500	137.700
12.00	2.39	81.170	112.600	149.900
12.50	2.49	87.850	122.100	162.500
13.00	2.59	94.790	131.900	175.800
13.50	2.69	102.000	142.200	189.500
14.00	2.79	109.500	152.800	203.700
14.50	2.88	117.200	163.800	218.500
15.00	2.98	125.200	175.200	233.700
15.50	3.08	133.400	187.000	249.500
16.00	3.18	141.900	199.100	265.800
16.50	3.28	150.700	211.700	282.600
17.00	3.38	159.700	224.600	300.000
17.50	3.48	169.000	237.900	317.800
18.00	3.58	178.600	251.600	336.200
18.50	3.68	188.400	265.600	355.100
19.00	3.78	198.500	280.100	374.500
19.50	3.88	208.800	294.900	394.400
20.00	3.98	219.400	310.200	414.800
20.50	4.08	230.300	325.800	435.800
21.00	4.18	241.400	341.700	457.200
21.50	4.28	252.800	358.100	479.200
22.00	4.38	264.500	374.900	
22.50	4.48	276.400	392.000	
23.00	4.58	288.600	409.500	
23.50	4.68	301.000	427.400	
24.00	4.77	313.700	445.700	
24.50	4.87	326.600	464.300	
25.00	4.97	339.900	483.400	
25.50	5.07	353.300		
26.00	5.17	367.100		
26.50	5.27	381.100		

Pressure loss table for DN 100

Q [1/s]	DN 100			
	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{k}}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{1}=0.4 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{1}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
0.60	0.08	0.110	0.120	0.137
0.70	0.09	0.144	0.158	0.183
0.80	0.10	0.182	0.201	0.235
0.90	0.11	0.224	0.249	0.293
1.00	0.13	0.269	0.302	0.357
1.25	0.16	0.400	0.456	0.546
1.50	0.19	0.554	0.639	0.774
1.75	0.22	0.730	0.852	1.041
2.00	0.25	0.929	1.095	1.347
2.25	0.29	1.149	1.367	1.693
2.50	0.32	1.392	1.669	2.077
2.75	0.35	1.656	2.000	2.501
3.00	0.38	1.941	2.361	2.964
3.25	0.41	2.247	2.751	3.466
3.50	0.45	2.575	3.171	4.007
3.75	0.48	2.924	3.620	4.587
4.00	0.51	3.294	4.099	5.207
4.25	0.54	3.684	4.607	5.865
4.50	0.57	4.096	5.144	6.563
4.75	0.60	4.528	5.710	7.300
5.00	0.64	4.982	6.306	8.076
5.25	0.67	5.456	6.932	8.891
5.50	0.70	5.950	7.587	9.745
5.75	0.73	6.466	8.271	10.640
6.00	0.76	7.002	8.984	11.570
6.25	0.80	7.558	9.727	12.540
6.50	0.83	8.136	10.500	13.550
6.75	0.86	8.733	11.300	14.600
7.00	0.89	9.352	12.130	15.690
7.25	0.92	9.991	12.990	16.820
7.50	0.95	10.650	13.880	17.990
7.75	0.99	11.330	14.800	19.190
8.00	1.02	12.030	15.750	20.440
8.25	1.05	12.750	16.730	21.720
8.50	1.08	13.490	17.730	23.050
8.75	1.11	14.250	18.770	24.410
9.00	1.15	15.040	19.840	25.810
9.25	1.18	15.840	20.930	27.250
9.50	1.21	16.660	22.050	28.730
9.75	1.24	17.510	23.210	30.250
10.00	1.27	18.370	24.390	31.810
10.25	1.31	19.260	25.600	33.410
10.50	1.34	20.160	26.850	35.050
10.75	1.37	21.090	28.120	36.720
11.00	1.40	22.030	29.420	38.440
11.50	1.46	23.980	32.110	41.980
12.00	1.53	26.020	34.910	45.690
12.50	1.59	28.130	37.840	49.550
13.00	1.66	30.330	40.880	53.570
13.50	1.72	32.610	44.030	57.740
14.00	1.78	34.970	47.310	62.070
14.50	1.85	37.410	50.700	66.550
15.00	1.91	39.930	54.210	71.200
15.50	1.97	42.530	57.840	76.000
16.00	2.04	45.220	61.590	80.950
16.50	2.10	47.990	65.450	86.070
17.00	2.16	50.830	69.430	91.330
17.50	2.23	53.760	73.520	96.760
18.00	2.29	56.770	77.740	102.300
18.50	2.36	59.860	82.070	108.100
19.00	2.42	63.040	86.520	114.000
19.50	2.48	66.290	91.090	120.000
20.00	2.55	69.630	95.770	126.200
20.50	2.61	73.040	100.600	132.600
21.00	2.67	76.540	105.500	139.100
21.50	2.74	80.120	110.500	145.800
22.00	2.80	83.780	115.700	152.600
22.50	2.86	87.520	120.900	159.600
23.00	2.93	91.340	126.300	166.800
23.50	2.99	95.240	131.800	174.100
24.00	3.06	99.230	137.500	181.500
24.50	3.12	103.300	143.200	189.100
25.00	3.18	107.400	149.100	196.900
25.50	3.25	111.700	155.000	204.900
26.00	3.31	116.000	161.100	212.900
26.50	3.37	120.400	167.300	221.200
27.00	3.44	124.800	173.700	229.600

Pressure loss table for DN 125

$\mathrm{Q}[1 / \mathrm{s}]$	DN 125			
	v [m/s]	$\begin{gathered} \mathrm{ki}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{ki}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{ki}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
1.00	0.08	0.090	0.098	0.112
1.25	0.10	0.134	0.147	0.170
1.50	0.12	0.184	0.205	0.240
1.75	0.14	0.242	0.272	0.321
2.00	0.16	0.307	0.348	0.414
2.25	0.18	0.379	0.433	0.518
2.50	0.20	0.458	0.527	0.635
2.75	0.22	0.544	0.630	0.762
3.00	0.24	0.636	0.742	0.902
3.25	0.26	0.736	0.862	1.053
3.50	0.28	0.841	0.992	1.216
3.75	0.30	0.954	1.130	1.390
4.00	0.32	1.073	1.277	1.576
4.25	0.34	1.198	1.433	1.773
4.50	0.36	1.330	1.598	1.983
4.75	0.38	1.468	1.772	2.203
5.00	0.40	1.613	1.954	2.436
5.25	0.42	1.765	2.146	2.680
5.50	0.44	1.922	2.346	2.935
5.75	0.46	2.086	2.555	3.203
6.00	0.48	2.257	2.772	3.481
6.25	0.50	2.434	2.999	3.772
6.50	0.52	2.617	3.234	4.074
6.75	0.54	2.806	3.479	4.387
7.00	0.56	3.002	3.732	4.713
7.25	0.59	3.204	3.993	5.049
7.50	0.61	3.413	4.264	5.398
7.75	0.63	3.628	4.543	5.758
8.00	0.65	3.849	4.831	6.130
8.25	0.67	4.076	5.128	6.513
8.50	0.69	4.310	5.434	6.908
8.75	0.71	4.550	5.749	7.314
9.00	0.73	4.796	6.072	7.732
9.25	0.75	5.048	6.404	8.162
9.50	0.77	5.307	6.745	8.603
9.75	0.79	5.572	7.095	9.056
10.00	0.81	5.843	7.454	9.521
10.50	0.85	6.404	8.197	10.480
11.00	0.89	6.990	8.976	11.490
11.50	0.93	7.601	9.790	12.550
12.00	0.97	8.237	10.640	13.650
12.50	1.01	8.897	11.520	14.800
13.00	1.05	9.583	12.440	16.000
13.50	1.09	10.290	13.400	17.240
14.00	1.13	11.030	14.390	18.530
14.50	1.17	11.790	15.410	19.870
15.00	1.21	12.570	16.470	21.250
15.50	1.25	13.380	17.570	22.680
16.00	1.29	14.220	18.700	24.150
16.50	1.33	15.070	19.860	25.670
17.00	1.37	15.960	21.060	27.240
17.50	1.41	16.870	22.300	28.850
18.00	1.45	17.800	23.570	30.510
18.50	1.49	18.760	24.880	32.220
19.00	1.53	19.740	26.220	33.970
19.50	1.57	20.750	27.590	35.770
20.00	1.61	21.780	29.010	37.620
20.50	1.65	22.830	30.450	39.510
21.00	1.69	23.910	31.930	41.450
21.50	1.74	25.020	33.450	43.440
22.00	1.78	26.150	35.000	45.470
22.50	1.82	27.310	36.590	47.540
23.00	1.86	28.490	38.210	49.670
23.50	1.90	29.690	39.870	51.840
24.00	1.94	30.920	41.560	54.060
24.50	1.98	32.170	43.290	56.320
25.00	2.02	33.450	45.060	58.630
25.50	2.06	34.750	46.850	60.990
26.00	2.10	36.080	48.690	63.390
26.50	2.14	37.430	50.560	65.840
27.00	2.18	38.810	52.460	68.340
27.50	2.22	40.210	54.400	70.880
28.00	2.26	41.640	56.370	73.470
28.50	2.30	43.090	58.380	76.100
29.00	2.34	44.560	60.430	78.780
29.50	2.38	46.060	62.510	81.510
30.00	2.42	47.590	64.620	84.290
30.50	2.46	49.130	66.770	87.110

Pressure loss table for DN 150 cont.

	DN 150				Q [1/s]	DN 150			
Q [1/s]	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{k}}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{1}=0.4 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{1}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$		v [m/s]	$\begin{gathered} k_{1}=0,1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{1}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{k}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
1.50	0.08	0.076	0.083	0.094	12.50	0.70	3.542	4.439	5.604
1.75	0.10	0.100	0.109	0.125	13.00	0.73	3.812	4.791	6.055
2.00	0.11	0.127	0.139	0.161	13.50	0.75	4.091	5.155	6.523
2.25	0.13	0.156	0.173	0.201	14.00	0.78	4.380	5.533	7.009
2.50	0.14	0.188	0.210	0.246	14.50	0.81	4.678	5.925	7.512
2.75	0.15	0.223	0.250	0.295	15.00	0.84	4.986	6.329	8.033
3.00	0.17	0.260	0.294	0.348	15.50	0.87	5.303	6.747	8.571
3.25	0.18	0.301	0.341	0.406	16.00	0.89	5.630	7.179	9.126
3.50	0.20	0.343	0.392	0.468	16.50	0.92	5.967	7.623	9.699
3.75	0.21	0.389	0.446	0.534	17.00	0.95	6.313	8.081	10.290
4.00	0.22	0.437	0.503	0.605	17.50	0.98	6.668	8.552	10.900
4.25	0.24	0.487	0.564	0.680	18.00	1.01	7.033	9.037	11.520
4.50	0.25	0.540	0.628	0.760	18.50	1.03	7.407	9.535	12.170
4.75	0.27	0.596	0.695	0.843	19.00	1.06	7.791	10.050	12.830
5.00	0.28	0.654	0.766	0.932	19.50	1.09	8.184	10.570	13.500
5.25	0.29	0.715	0.840	1.024	20.00	1.12	8.587	11.110	14.200
5.50	0.31	0.778	0.917	1.121	20.50	1.14	8.999	11.660	14.910
5.75	0.32	0.844	0.998	1.222	21.00	1.17	9.421	12.220	15.640
6.00	0.34	0.912	1.082	1.328	21.50	1.20	9.852	12.800	16.390
6.25	0.35	0.983	1.170	1.438	22.00	1.23	10.290	13.390	17.150
6.50	0.36	1.056	1.260	1.552	22.50	1.26	10.740	14.000	17.930
6.75	0.38	1.131	1.355	1.671	23.00	1.28	11.200	14.610	18.730
7.00	0.39	1.209	1.452	1.794	23.50	1.31	11.670	15.240	19.550
7.25	0.40	1.290	1.553	1.922	24.00	1.34	12.150	15.890	20.380
7.50	0.42	1.373	1.657	2.053	24.50	1.37	12.640	16.550	21.240
7.75	0.43	1.458	1.764	2.190	25.00	1.40	13.130	17.220	22.100
8.00	0.45	1.546	1.875	2.330	25.50	1.42	13.640	17.900	22.990
8.25	0.46	1.637	1.989	2.475	26.00	1.45	14.160	18.600	23.890
8.50	0.47	1.729	2.107	2.624	26.50	1.48	14.680	19.310	24.820
8.75	0.49	1.824	2.228	2.778	27.00	1.51	15.220	20.030	25.750
9.00	0.50	1.922	2.352	2.936	27.50	1.54	15.760	20.770	26.710
9.25	0.52	2.022	2.479	3.098	28.00	1.56	16.310	21.520	27.680
9.50	0.53	2.125	2.610	3.265	28.50	1.59	16.880	22.280	28.680
9.75	0.54	2.229	2.744	3.436	29.00	1.62	17.450	23.060	29.680
10.00	0.56	2.337	2.882	3.611	29.50	1.65	18.030	23.850	30.710
10.50	0.59	2.559	3.166	3.975	30.00	1.68	18.620	24.650	31.750
11.00	0.61	2.790	3.465	4.356	30.50	1.70	19.220	25.470	32.810
11.50	0.64	3.031	3.776	4.755	31.00	1.73	19.830	26.300	33.890
12.00	0.67	3.282	4.101	5.171	31.50	1.76	20.450	27.140	34.990
					32.00	1.79	21.080	28.000	36.100
					32.50	1.81	21.720	28.870	37.230
					33.00	1.84	22.370	29.750	38.380
					33.50	1.87	23.020	30.650	39.540
					34.00	1.90	23.690	31.560	40.730
					34.50	1.93	24.370	32.490	41.930
					35.00	1.95	25.050	33.420	43.150
					35.50	1.98	25.750	34.370	44.380
					36.00	2.01	26.450	35.330	45.630
					36.50	2.04	27.160	36.310	46.900
					37.00	2.07	27.890	37.300	48.190
					37.50	2.09	28.620	38.300	49.490
					38.00	2.12	29.360	39.320	50.820
					38.50	2.15	30.110	40.350	52.160
					39.00	2.18	30.870	41.390	53.510
					39.50	2.21	31.640	42.450	54.890
					40.00	2.23	32.420	43.520	56.280
					40.50	2.26	33.210	44.600	57.690
					41.00	2.29	34.010	45.700	59.120
					41.50	2.32	34.820	46.810	60.560
					42.00	2.35	35.630	47.930	62.020
					42.50	2.37	36.460	49.070	63.500
					43.00	2.40	37.290	50.220	65.000
					43.50	2.43	38.140	51.380	66.510
					44.00	2.46	38.990	52.550	68.040
					44.50	2.48	39.860	53.740	69.590
					45.00	2.51	40.730	54.950	71.160
					45.50	2.54	41.610	56.160	72.740
					46.00	2.57	42.500	57.390	74.340
					46.50	2.60	43.400	58.630	75.960
					47.00	2.62	44.310	59.890	77.590
					47.50	2.65	45.230	61.160	79.250
					48.00	2.68	46.160	62.440	80.920
					48.50	2.71	47.100	63.740	82.610
					49.00	2.74	48.050	65.040	84.310
					49.50	2.76	49.010	66.370	86.030
					50.00	2.79	49.980	67.700	87.780
					51.00	2.85	51.940	70.410	91.310

Pressure loss table for DN 200

Q [1/s]	DN 200			
	v [m/s]	$\begin{gathered} \mathrm{ki}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k} \mathrm{i}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{ki}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
2.50	0.08	0.045	0.048	0.054
3.00	0.09	0.062	0.067	0.076
3.50	0.11	0.081	0.089	0.102
4.00	0.12	0.103	0.114	0.131
4.50	0.14	0.127	0.141	0.164
5.00	0.15	0.154	0.172	0.200
5.50	0.17	0.183	0.205	0.240
6.00	0.18	0.214	0.241	0.284
6.50	0.20	0.247	0.280	0.331
7.00	0.22	0.282	0.321	0.382
7.50	0.23	0.319	0.366	0.436
8.00	0.25	0.359	0.413	0.494
8.50	0.26	0.401	0.463	0.556
9.00	0.28	0.445	0.516	0.621
10.00	0.31	0.539	0.630	0.762
11.00	0.34	0.642	0.755	0.917
12.00	0.37	0.753	0.892	1.087
13.00	0.40	0.872	1.039	1.271
14.00	0.43	1.000	1.197	1.470
15.00	0.46	1.136	1.367	1.682
16.00	0.49	1.280	1.548	1.909
17.00	0.52	1.432	1.740	2.151
18.00	0.55	1.593	1.942	2.407
19.00	0.58	1.762	2.156	2.677
20.00	0.62	1.938	2.381	2.961
21.00	0.65	2.123	2.618	3.260
22.00	0.68	2.316	2.865	3.573
23.00	0.71	2.517	3.123	3.901
24.00	0.74	2.726	3.392	4.242
25.00	0.77	2.943	3.673	4.598
26.00	0.80	3.168	3.964	4.969
27.00	0.83	3.402	4.267	5.354
28.00	0.86	3.643	4.581	5.753
29.00	0.89	3.892	4.905	6.166
30.00	0.92	4.149	5.241	6.594
31.00	0.95	4.414	5.588	7.036
32.00	0.98	4.688	5.946	7.493
33.00	1.02	4.969	6.315	7.964
34.00	1.05	5.258	6.695	8.449
35.00	1.08	5.555	7.086	8.948
36.00	1.11	5.860	7.488	9.462
37.00	1.14	6.174	7.901	9.990
38.00	1.17	6.495	8.326	10.530
39.00	1.20	6.824	8.761	11.090
40.00	1.23	7.161	9.208	11.660
41.00	1.26	7.506	9.665	12.250
42.00	1.29	7.859	10.130	12.850
43.00	1.32	8.219	10.610	13.460
44.00	1.35	8.588	11.100	14.090
45.00	1.38	8.965	11.610	14.730
46.00	1.42	9.350	12.120	15.390
47.00	1.45	9.742	12.640	16.060
48.00	1.48	10.140	13.180	16.750
49.00	1.51	10.550	13.720	17.450
50.00	1.54	10.970	14.280	18.160
52.50	1.62	12.040	15.720	20.010
55.00	1.69	13.170	17.230	21.950
57.50	1.77	14.340	18.810	23.980
60.00	1.85	15.570	20.460	26.090
62.50	1.92	16.840	22.180	28.300
65.00	2.00	18.170	23.970	30.600
70.00	2.15	20.960	27.750	35.460
75.00	2.31	23.960	31.800	40.680
80.00	2.46	27.150	36.140	46.260
85.00	2.62	30.540	40.750	52.200
90.00	2.77	34.120	45.640	58.490
95.00	2.92	37.910	50.800	65.150
100.00	3.08	41.890	56.240	72.160
105.00	3.23	46.070	61.960	79.530
110.00	3.39	50.440	67.950	87.260
115.00	3.54	55.020	74.230	95.350
120.00	3.69	59.790	80.770	103.800
125.00	3.85	64.760	87.600	112.600
130.00	4.00	69.930	94.700	121.800
135.00	4.15	75.290	102.100	131.300
140.00	4.31	80.850	109.700	141.200
145.00	4.46	86.610	117.700	151.400

Pressure loss table for DN 250

Q [1/s]	DN 250			
	v [m/s]	$\begin{gathered} k_{=}=0.1 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{1}=0.4 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{1}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
4.00	0.08	0.035	0.038	0.042
4.50	0.09	0.043	0.047	0.053
5.00	0.10	0.052	0.057	0.064
5.50	0.11	0.062	0.068	0.077
6.00	0.12	0.072	0.079	0.090
6.50	0.13	0.084	0.092	0.105
7.00	0.14	0.095	0.105	0.121
7.50	0.15	0.108	0.120	0.138
8.00	0.16	0.121	0.135	0.156
8.50	0.17	0.135	0.151	0.176
9.00	0.18	0.150	0.168	0.196
10.00	0.20	0.181	0.204	0.240
11.00	0.22	0.215	0.244	0.288
12.00	0.24	0.252	0.288	0.341
13.00	0.26	0.292	0.334	0.398
14.00	0.28	0.334	0.385	0.459
15.00	0.30	0.379	0.438	0.525
16.00	0.31	0.426	0.496	0.596
17.00	0.33	0.476	0.556	0.670
18.00	0.35	0.529	0.620	0.749
19.00	0.37	0.584	0.688	0.833
20.00	0.39	0.642	0.758	0.920
21.00	0.41	0.702	0.833	1.013
22.00	0.43	0.765	0.910	1.109
23.00	0.45	0.831	0.992	1.210
24.00	0.47	0.899	1.076	1.315
25.00	0.49	0.970	1.164	1.425
26.00	0.51	1.043	1.256	1.539
27.00	0.53	1.119	1.350	1.658
28.00	0.55	1.197	1.449	1.781
29.00	0.57	1.278	1.550	1.908
30.00	0.59	1.361	1.655	2.039
31.00	0.61	1.447	1.764	2.176
32.00	0.63	1.536	1.876	2.316
33.00	0.65	1.627	1.991	2.461
34.00	0.67	1.720	2.110	2.610
35.00	0.69	1.816	2.232	2.763
36.00	0.71	1.915	2.357	2.921
37.00	0.73	2.016	2.486	3.084
38.00	0.75	2.119	2.619	3.250
39.00	0.77	2.225	2.754	3.421
40.00	0.79	2.334	2.894	3.597
41.00	0.81	2.445	3.036	3.777
42.00	0.83	2.558	3.182	3.961
43.00	0.85	2.674	3.332	4.150
44.00	0.87	2.792	3.484	4.343
45.00	0.89	2.913	3.641	4.540
46.00	0.90	3.037	3.800	4.742
47.00	0.92	3.163	3.963	4.948
48.00	0.94	3.291	4.130	5.158
49.00	0.96	3.422	4.300	5.373
50.00	0.98	3.556	4.473	5.592
52.50	1.03	3.900	4.921	6.160
55.00	1.08	4.260	5.391	6.755
57.50	1.13	4.635	5.882	7.377
60.00	1.18	5.026	6.394	8.026
62.50	1.23	5.433	6.927	8.703
65.00	1.28	5.854	7.482	9.408
70.00	1.38	6.745	8.655	10.900
75.00	1.48	7.696	9.9140	12.500
80.00	1.57	8.710	11.260	14.210
85.00	1.67	9.785	12.690	16.030
90.00	1.77	10.920	14.200	17.960
95.00	1.87	12.120	15.800	20.000
100.00	1.97	13.380	17.490	22.140
105.00	2.07	14.700	19.260	24.400
110.00	2.16	16.090	21.110	26.770
115.00	2.26	17.530	23.050	29.250
120.00	2.36	19.040	25.080	31.830
125.00	2.46	20.600	27.190	34.530
130.00	2.56	22.230	29.390	37.330
135.00	2.66	23.920	31.670	40.250
140.00	2.75	25.680	34.030	43.270
145.00	2.85	27.490	36.490	46.410
150.00	2.95	29.360	39.020	49.650
155.00	3.05	31.300	41.650	53.010
160.00	3.15	33.300	44.350	56.470

Pressure loss table for DN $\mathbf{3 0 0}$

Q [1/s]	DN 300			
	v [m/s]	$\begin{gathered} \mathrm{k}_{1}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{1}=0.4 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{1}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
6.00	0.08	0.030	0.032	0.036
7.00	0.10	0.039	0.043	0.048
8.00	0.11	0.050	0.054	0.061
9.00	0.12	0.062	0.067	0.077
10.00	0.14	0.075	0.082	0.094
11.00	0.15	0.089	0.098	0.113
12.00	0.16	0.104	0.115	0.133
13.00	0.18	0.120	0.133	0.155
14.00	0.19	0.137	0.153	0.179
15.00	0.20	0.155	0.174	0.204
16.00	0.22	0.174	0.197	0.231
17.00	0.23	0.194	0.220	0.260
18.00	0.25	0.216	0.246	0.290
19.00	0.26	0.238	0.272	0.322
20.00	0.27	0.261	0.300	0.356
22.00	0.30	0.311	0.359	0.428
24.00	0.33	0.365	0.424	0.507
26.00	0.35	0.423	0.493	0.593
28.00	0.38	0.485	0.568	0.685
30.00	0.41	0.551	0.649	0.784
32.00	0.44	0.620	0.734	0.889
34.00	0.46	0.694	0.825	1.002
36.00	0.49	0.772	0.921	1.121
38.00	0.52	0.853	1.022	1.246
40.00	0.55	0.939	1.128	1.378
42.00	0.57	1.028	1.240	1.517
44.00	0.60	1.121	1.357	1.663
46.00	0.63	1.218	1.479	1.815
48.00	0.65	1.319	1.606	1.974
50.00	0.68	1.424	1.738	2.139
52.50	0.72	1.561	1.911	2.355
55.00	0.75	1.703	2.092	2.582
57.50	0.78	1.852	2.281	2.819
60.00	0.82	2.006	2.479	3.066
62.50	0.85	2.167	2.684	3.324
65.00	0.89	2.333	2.898	3.592
70.00	0.95	2.684	3.349	4.159
75.00	1.02	3.059	3.833	4.768
80.00	1.09	3.458	4.350	5.418
85.00	1.16	3.880	4.899	6.110
90.00	1.23	4.327	5.481	6.844
95.00	1.30	4.797	6.095	7.619
100.00	1.36	5.291	6.741	8.435
105.00	1.43	5.808	7.421	9.294
110.00	1.50	6.350	8.132	10.190
115.00	1.57	6.915	8.877	11.130
120.00	1.64	7.504	9.654	12.120
125.00	1.70	8.116	10.460	13.140
130.00	1.77	8.752	11.300	14.210
135.00	1.84	9.412	12.180	15.310
140.00	1.91	10.100	13.090	16.460
145.00	1.98	10.800	14.030	17.650
150.00	2.05	11.530	15.000	18.890
155.00	2.11	12.290	16.000	20.160
160.00	2.18	13.070	17.040	21.480
165.00	2.25	13.870	18.110	22.830
170.00	2.32	14.690	19.210	24.230
175.00	2.39	15.540	20.340	25.670
180.00	2.45	16.410	21.510	27.150
185.00	2.52	17.310	22.710	28.670
190.00	2.59	18.230	23.940	30.240
195.00	2.66	19.170	25.210	31.840
200.00	2.73	20.140	26.510	33.490
205.00	2.79	21.130	27.840	35.180
210.00	2.86	22.150	29.200	36.910
215.00	2.93	23.180	30.590	38.680
220.00	3.00	24.250	32.020	40.500
225.00	3.07	25.330	33.480	42.350
230.00	3.14	26.440	34.970	44.250
235.00	3.20	27.570	36.500	46.190
240.00	3.27	28.730	38.050	48.170
245.00	3.34	29.910	39.640	50.190
250.00	3.41	31.110	41.270	52.250
255.00	3.48	32.340	42.920	54.360
260.00	3.54	33.590	44.610	56.500
265.00	3.61	34.860	46.330	58.690
270.00	3.68	36.160	48.080	60.920

Pressure loss table for DN 400

Q [1/s]	DN 400			
	v [m/s]	$\begin{gathered} \mathrm{k}_{\mathrm{k}}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{1}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{k}}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
9.00	0.07	0.016	0.017	0.019
10.00	0.08	0.020	0.021	0.023
12.50	0.10	0.029	0.032	0.035
15.00	0.12	0.041	0.044	0.050
17.50	0.14	0.054	0.059	0.067
20.00	0.16	0.068	0.075	0.086
25.00	0.20	0.102	0.114	0.132
30.00	0.24	0.142	0.161	0.188
35.00	0.27	0.189	0.215	0.253
40.00	0.31	0.241	0.277	0.328
45.00	0.35	0.300	0.347	0.413
50.00	0.39	0.364	0.424	0.508
55.00	0.43	0.434	0.509	0.612
60.00	0.47	0.510	0.602	0.726
65.00	0.51	0.592	0.703	0.849
70.00	0.55	0.679	0.811	0.982
75.00	0.59	0.773	0.926	1.125
80.00	0.63	0.872	1.050	1.277
85.00	0.67	0.977	1.181	1.440
90.00	0.71	1.088	1.319	1.611
95.00	0.75	1.204	1.466	1.793
100.00	0.78	1.326	1.620	1.984
105.00	0.82	1.454	1.781	2.185
110.00	0.86	1.587	1.950	2.395
115.00	0.90	1.726	2.127	2.615
120.00	0.94	1.871	2.312	2.845
125.00	0.98	2.022	2.504	3.085
130.00	1.02	2.178	2.704	3.334
135.00	1.06	2.339	2.911	3.593
140.00	1.10	2.507	3.126	3.861
145.00	1.14	2.680	3.349	4.140
150.00	1.18	2.859	3.579	4.427
155.00	1.22	3.043	3.817	4.725
160.00	1.26	3.233	4.063	5.032
165.00	1.29	3.429	4.316	5.349
170.00	1.33	3.630	4.577	5.675
175.00	1.37	3.837	4.846	6.012
180.00	1.41	4.050	5.122	6.358
185.00	1.45	4.268	5.406	6.713
190.00	1.49	4.492	5.697	7.078
195.00	1.53	4.721	5.996	7.453
200.00	1.57	4.956	6.303	7.838
205.00	1.61	5.197	6.617	8.232
210.00	1.65	5.443	6.939	8.636
215.00	1.69	5.695	7.269	9.049
220.00	1.73	5.953	7.606	9.473
225.00	1.77	6.216	7.951	9.905
230.00	1.80	6.484	8.303	10.350
235.00	1.84	6.759	8.664	10.800
240.00	1.88	7.039	9.031	11.260
245.00	1.92	7.324	9.407	11.730
250.00	1.96	7.616	9.790	12.210
260.00	2.04	8.215	10.580	13.210
270.00	2.12	8.837	11.400	14.240
280.00	2.20	9.481	12.250	15.310
290.00	2.28	10.150	13.130	16.410
300.00	2.35	10.840	14.040	17.560
310.00	2.43	11.550	14.980	18.740
320.00	2.51	12.280	15.950	19.970
330.00	2.59	13.040	16.960	21.230
340.00	2.67	13.820	17.990	22.530
350.00	2.75	14.620	19.050	23.870
360.00	2.83	15.440	20.150	25.250
370.00	2.90	16.290	21.270	26.670
380.00	2.98	17.150	22.430	28.120
390.00	3.06	18.050	23.620	29.620
400.00	3.14	18.960	24.830	31.150
410.00	3.22	19.890	26.080	32.720
420.00	3.30	20.850	27.360	34.330
430.00	3.37	21.830	28.670	35.980
440.00	3.45	22.830	30.000	37.670
450.00	3.53	23.860	31.370	39.390
460.00	3.61	24.910	32.770	41.160
470.00	3.69	25.980	34.200	42.960
480.00	3.77	27.070	35.670	44.800
490.00	3.85	28.180	37.160	46.690
500.00	3.92	29.320	38.680	48.610

Pressure loss table for DN 500

Q [1/s]	DN 500			
	v [m/s]	$\begin{gathered} \mathrm{k}_{1}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{1}=1.00 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
15.00	0.008	0.0014	0.0015	0.0016
17.50	0.009	0.0018	0.0019	0.0022
20.00	0.100	0.0023	0.0025	0.0028
25.00	0.130	0.0035	0.0037	0.0042
30.00	0.150	0.0048	0.0052	0.0060
35.00	0.180	0.0063	0.0070	0.0080
40.00	0.200	0.0081	0.0090	0.1040
45.00	0.230	0.1000	0.1120	0.1300
50.00	0.250	0.1210	0.1370	0.1600
55.00	0.280	0.1450	0.1640	0.1920
60.00	0.300	0.1700	0.1930	0.2270
65.00	0.330	0.1970	0.2250	0.2660
70.00	0.350	0.2250	0.2590	0.3070
75.00	0.380	0.2560	0.2960	0.3510
80.00	0.400	0.2880	0.3350	0.3980
85.00	0.430	0.3230	0.3760	0.4490
90.00	0.450	0.3590	0.4200	0.5020
95.00	0.480	0.3970	0.4660	0.5580
100.00	0.500	0.4360	0.5140	0.6170
105.00	0.530	0.4780	0.5650	0.6790
110.00	0.550	0.5210	0.6180	0.7440
115.00	0.580	0.5660	0.6740	0.8120
120.00	0.600	0.6130	0.7320	0.8830
125.00	0.630	0.6620	0.7920	0.9570
130.00	0.650	0.7130	0.8540	1.0034
135.00	0.680	0.7650	0.9190	1.1140
140.00	0.700	0.8190	0.9870	1.1970
145.00	0.730	0.8750	1.0056	1.2830
150.00	0.750	0.9320	1.1280	1.3720
155.00	0.780	0.9920	1.2030	1.4630
160.00	0.800	1.0053	1.2800	1.5580
165.00	0.830	1.1160	1.3590	1.6560
170.00	0.850	1.1810	1.4400	1.7570
175.00	0.880	1.2470	1.5240	1.8600
180.00	0.900	1.3160	1.6100	1.9670
185.00	0.930	1.3860	1.6990	2.0076
190.00	0.950	1.4570	1.7900	2.1890
195.00	0.980	1.5310	1.8830	2.3040
200.00	1.000	1.6060	1.9790	2.4230
205.00	1.003	1.6830	2.0077	2.5440
210.00	1.005	1.7620	2.1770	2.6690
215.00	1.008	1.8430	2.2800	2.7960
220.00	1.100	1.9250	2.3850	2.9270
225.00	1.130	2.0009	2.4920	3.0060
230.00	1.150	2.0095	2.6020	3.1960
235.00	1.180	2.1830	2.7140	3.3350
240.00	1.200	2.2720	2.8290	3.4780
245.00	1.230	2.3640	2.9460	3.6230
250.00	1.250	2.4570	3.0065	3.7710
260.00	1.300	2.6480	3.3110	4.0076
270.00	1.350	2.8460	3.5660	4.3930
280.00	1.400	3.0051	3.8300	4.7220
290.00	1.450	3.2630	4.1040	5.0063
300.00	1.500	3.4820	4.3870	5.4160
310.00	1.550	3.7090	4.6800	5.7800
320.00	1.600	3.9420	4.9820	6.1570
330.00	1.650	4.1820	5.2940	6.5450
340.00	1.700	4.4290	5.6150	6.9450
350.00	1.750	4.6830	5.9450	7.3580
360.00	1.800	4.9450	6.2850	7.7820
370.00	1.850	5.2130	6.6350	8.2170
380.00	1.900	5.4880	6.9940	8.6650
390.00	1.950	5.7700	7.3620	9.1250
400.00	2.000	6.0059	7.7400	9.5960
410.00	2.006	6.3550	8.1270	10.0080
420.00	2.110	6.6590	8.5230	10.5700
430.00	2.160	6.9690	8.9290	11.0080
440.00	2.210	7.2860	9.3450	11.6000
450.00	2.260	7.6100	9.7700	12.1300
460.00	2.310	7.9410	10.2000	12.6700
470.00	2.360	8.2790	10.6500	13.2300
480.00	2.410	8.6240	11.1000	13.7900
490.00	2.460	8.9760	11.5600	14.3700
500.00	2.510	9.3350	12.0040	14.9600
525.00	2.630	10.2600	13.2600	16.4900
550.00	2.760	11.2300	14.5400	18.0090
575.00	2.880	12.2500	15.8800	19.7700

Pressure loss table for DN 600

Q [$1 / \mathrm{s}$]	DN 600			
	v [m/s]	$\begin{gathered} \hline \mathrm{ki}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{ki}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \hline \mathrm{ki}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
25.00	0.09	0.014	0.015	0.017
30.00	0.10	0.020	0.021	0.024
35.00	0.12	0.026	0.028	0.032
40.00	0.14	0.033	0.036	0.041
45.00	0.16	0.041	0.045	0.051
50.00	0.17	0.050	0.055	0.063
55.00	0.19	0.059	0.066	0.075
60.00	0.21	0.069	0.077	0.089
65.00	0.23	0.080	0.090	0.104
70.00	0.24	0.092	0.103	0.120
75.00	0.26	0.104	0.118	0.137
80.00	0.28	0.118	0.133	0.155
85.00	0.30	0.131	0.149	0.174
90.00	0.31	0.146	0.166	0.195
95.00	0.33	0.161	0.184	0.216
100.00	0.35	0.177	0.203	0.239
110.00	0.38	0.212	0.244	0.288
120.00	0.42	0.249	0.288	0.342
130.00	0.45	0.288	0.336	0.400
140.00	0.49	0.331	0.388	0.462
150.00	0.52	0.376	0.443	0.529
160.00	0.56	0.425	0.501	0.601
170.00	0.59	0.476	0.564	0.677
180.00	0.63	0.529	0.630	0.758
190.00	0.66	0.586	0.700	0.843
200.00	0.70	0.645	0.773	0.933
210.00	0.73	0.707	0.850	1.027
220.00	0.76	0.772	0.930	1.126
230.00	0.80	0.840	1.015	1.229
240.00	0.83	0.910	1.102	1.337
250.00	0.87	0.983	1.194	1.450
260.00	0.90	1.059	1.289	1.567
270.00	0.94	1.137	1.388	1.688
280.00	0.97	1.218	1.490	1.814
290.00	1.01	1.302	1.596	1.945
300.00	1.04	1.389	1.705	2.080
310.00	1.08	1.478	1.819	2.219
320.00	1.11	1.570	1.935	2.363
330.00	1.15	1.665	2.056	2.512
340.00	1.18	1.763	2.180	2.665
350.00	1.22	1.863	2.308	2.823
360.00	1.25	1.966	2.439	2.985
370.00	1.29	2.071	2.574	3.152
380.00	1.32	2.180	2.712	3.324
390.00	1.36	2.291	2.854	3.499
400.00	1.39	2.405	3.000	3.680
410.00	1.43	2.521	3.150	3.865
420.00	1.46	2.640	3.303	4.054
430.00	1.49	2.762	3.459	4.248
440.00	1.53	2.887	3.620	4.447
450.00	1.56	3.014	3.783	4.650
460.00	1.60	3.144	3.951	4.857
470.00	1.63	3.277	4.122	5.070
480.00	1.67	3.412	4.297	5.286
490.00	1.70	3.550	4.475	5.507
500.00	1.74	3.691	4.657	5.733
520.00	1.81	3.981	5.032	6.198
540.00	1.88	4.282	5.422	6.681
560.00	1.95	4.593	5.825	7.183
580.00	2.02	4.915	6.244	7.702
600.00	2.09	5.248	6.676	8.240
625.00	2.17	5.679	7.238	8.937
650.00	2.26	6.127	7.822	9.663
675.00	2.35	6.592	8.429	10.420
700.00	2.43	7.074	9.058	11.200
725.00	2.52	7.573	9.710	12.010
750.00	2.61	8.089	10.380	12.850
775.00	2.69	8.621	11.080	13.720
800.00	2.78	9.170	11.800	14.610
825.00	2.87	9.736	12.540	15.540
850.00	2.95	10.320	13.310	16.490
875.00	3.04	10.920	14.100	17.470
900.00	3.13	11.540	14.910	18.480
925.00	3.22	12.170	15.740	19.520
950.00	3.30	12.820	16.600	20.580
975.00	3.39	13.490	17.470	21.680
1,000.00	3.48	14.170	18.370	22.800
1,050.00	3.65	15.590	20.240	25.130

Pressure loss table for DN 700

Q [1/s]	DN 700			
	v [m/s]	$\begin{gathered} \mathrm{ki}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{ki}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{ki}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
30.00	0.08	0.010	0.010	0.011
35.00	0.09	0.013	0.013	0.015
40.00	0.10	0.016	0.017	0.019
45.00	0.12	0.020	0.021	0.024
50.00	0.13	0.024	0.026	0.029
55.00	0.14	0.028	0.031	0.035
60.00	0.15	0.033	0.036	0.041
65.00	0.17	0.038	0.042	0.048
70.00	0.18	0.044	0.048	0.055
75.00	0.19	0.050	0.055	0.063
80.00	0.21	0.056	0.062	0.071
85.00	0.22	0.063	0.070	0.080
90.00	0.23	0.070	0.077	0.089
95.00	0.24	0.077	0.086	0.099
100.00	0.26	0.084	0.095	0.110
110.00	0.28	0.101	0.113	0.132
120.00	0.31	0.118	0.134	0.156
130.00	0.33	0.137	0.156	0.182
140.00	0.36	0.157	0.179	0.211
150.00	0.38	0.178	0.205	0.241
160.00	0.41	0.201	0.232	0.274
170.00	0.44	0.225	0.260	0.308
180.00	0.46	0.250	0.291	0.345
190.00	0.49	0.277	0.323	0.383
200.00	0.51	0.304	0.356	0.424
210.00	0.54	0.333	0.391	0.467
220.00	0.56	0.364	0.428	0.511
230.00	0.59	0.395	0.467	0.558
240.00	0.62	0.428	0.507	0.607
250.00	0.64	0.462	0.549	0.658
260.00	0.67	0.497	0.592	0.711
270.00	0.69	0.534	0.637	0.766
280.00	0.72	0.572	0.684	0.822
290.00	0.74	0.611	0.732	0.881
300.00	0.77	0.651	0.782	0.943
310.00	0.80	0.693	0.834	1.006
320.00	0.82	0.736	0.887	1.071
330.00	0.85	0.780	0.942	1.138
340.00	0.87	0.825	0.998	1.207
350.00	0.90	0.871	1.056	1.278
360.00	0.92	0.919	1.116	1.352
370.00	0.95	0.968	1.177	1.427
380.00	0.98	1.019	1.241	1.504
390.00	1.00	1.070	1.305	1.584
400.00	1.03	1.123	1.372	1.665
410.00	1.05	1.177	1.440	1.749
420.00	1.08	1.232	1.509	1.834
430.00	1.10	1.288	1.580	1.922
440.00	1.13	1.346	1.653	2.011
450.00	1.15	1.405	1.728	2.103
460.00	1.18	1.465	1.804	2.197
470.00	1.21	1.527	1.882	2.293
480.00	1.23	1.589	1.961	2.390
490.00	1.26	1.653	2.042	2.490
500.00	1.28	1.718	2.125	2.592
520.00	1.33	1.852	2.295	2.802
540.00	1.39	1.991	2.472	3.020
560.00	1.44	2.134	2.656	3.246
580.00	1.49	2.283	2.846	3.480
600.00	1.54	2.437	3.042	3.723
625.00	1.60	2.635	3.297	4.037
650.00	1.67	2.842	3.562	4.365
675.00	1.73	3.056	3.838	4.705
700.00	1.80	3.278	4.123	5.058
725.00	1.86	3.507	4.419	5.423
750.00	1.92	3.745	4.725	5.802
775.00	1.99	3.989	5.042	6.193
800.00	2.05	4.242	5.368	6.597
825.00	2.12	4.502	5.705	7.014
850.00	2.18	4.770	6.052	7.443
875.00	2.25	5.045	6.409	7.885
900.00	2.31	5.329	6.777	8.340
925.00	2.37	5.619	7.154	8.808
950.00	2.44	5.918	7.542	9.288
975.00	2.50	6.224	7.941	9.781
1,000.00	2.57	6.538	8.349	10.290
1,050.00	2.69	7.188	9.197	11.340
1,100.00	2.82	7.869	10.090	12.440

Pressure loss table for DN 800

Q [1/s]	DN 800			
	v [m/s]	$\begin{gathered} \hline k=0.1 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{1}=0.4 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{1}=1.0 \\ J[\mathrm{~m} / \mathrm{km}] \end{gathered}$
40.00	0.08	0.008	0.009	0.010
50.00	0.10	0.012	0.013	0.015
60.00	0.12	0.017	0.019	0.021
70.00	0.14	0.023	0.025	0.028
80.00	0.16	0.029	0.032	0.036
90.00	0.18	0.036	0.039	0.045
100.00	0.20	0.044	0.048	0.055
110.00	0.22	0.052	0.057	0.066
120.00	0.23	0.061	0.068	0.078
130.00	0.25	0.071	0.079	0.091
140.00	0.27	0.081	0.091	0.105
150.00	0.29	0.092	0.103	0.120
160.00	0.31	0.103	0.117	0.136
170.00	0.33	0.116	0.131	0.153
180.00	0.35	0.128	0.146	0.171
190.00	0.37	0.142	0.162	0.190
200.00	0.39	0.156	0.179	0.210
210.00	0.41	0.171	0.197	0.231
220.00	0.43	0.186	0.215	0.253
230.00	0.45	0.202	0.234	0.277
240.00	0.47	0.219	0.254	0.301
250.00	0.49	0.236	0.275	0.326
260.00	0.51	0.254	0.297	0.352
270.00	0.53	0.273	0.319	0.379
280.00	0.55	0.292	0.342	0.407
290.00	0.57	0.312	0.366	0.436
300.00	0.59	0.332	0.391	0.466
310.00	0.61	0.354	0.417	0.497
320.00	0.63	0.375	0.443	0.529
330.00	0.65	0.398	0.471	0.562
340.00	0.67	0.421	0.499	0.597
350.00	0.68	0.444	0.528	0.632
375.00	0.73	0.506	0.603	0.724
400.00	0.78	0.571	0.684	0.822
425.00	0.83	0.641	0.770	0.927
450.00	0.88	0.714	0.861	1.038
475.00	0.93	0.791	0.957	1.155
500.00	0.98	0.872	1.058	1.278
525.00	1.03	0.956	1.164	1.408
550.00	1.08	1.045	1.275	1.544
575.00	1.13	1.137	1.391	1.686
600.00	1.17	1.233	1.512	1.835
625.00	1.22	1.333	1.638	1.990
650.00	1.27	1.437	1.770	2.151
675.00	1.32	1.544	1.906	2.318
700.00	1.37	1.656	2.047	2.491
725.00	1.42	1.771	2.194	2.671
750.00	1.47	1.890	2.345	2.857
775.00	1.52	2.013	2.502	3.050
800.00	1.57	2.139	2.663	3.248
825.00	1.61	2.270	2.830	3.453
850.00	1.66	2.404	3.001	3.664
875.00	1.71	2.542	3.178	3.881
900.00	1.76	2.684	3.359	4.105
925.00	1.81	2.829	3.546	4.335
950.00	1.86	2.979	3.738	4.571
975.00	1.91	3.132	3.935	4.814
1,000.00	1.96	3.289	4.137	5.062
1,050.00	2.05	3.614	4.555	5.578
1,100.00	2.15	3.954	4.994	6.120
1,150.00	2.25	4.310	5.453	6.686
1,200.00	2.35	4.680	5.933	7.277
1,250.00	2.45	5.066	6.432	7.893
1,300.00	2.54	5.467	6.952	8.535
1,350.00	2.64	5.883	7.492	9.201
1,400.00	2.74	6.315	8.052	9.893
1,450.00	2.84	6.761	8.632	10.610
1,500.00	2.94	7.222	9.232	11.350
1,550.00	3.03	7.699	9.852	12.120
1,600.00	3.13	8.191	10.490	12.910
1,650.00	3.23	8.698	11.150	13.730
1,700.00	3.33	9.220	11.830	14.570
1,750.00	3.42	9.757	12.540	15.430
1,800.00	3.52	10.310	13.260	16.330
1,850.00	3.62	10.880	14.000	17.240
1,900.00	3.72	11.460	14.760	18.180
1,950.00	3.82	12.060	15.540	19.150
2,000.00	3.91	12.670	16.340	20.140

Pressure loss table for DN 900

Q [1/s]	DN 900			
	v [m/s]	$\begin{gathered} \mathrm{ki}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{ki}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{ki}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
50.00	0.08	0.007	0.007	0.008
60.00	0.09	0.010	0.010	0.011
70.00	0.11	0.013	0.014	0.015
80.00	0.12	0.016	0.018	0.020
90.00	0.14	0.020	0.022	0.025
100.00	0.15	0.025	0.027	0.030
110.00	0.17	0.029	0.032	0.036
120.00	0.19	0.034	0.038	0.043
130.00	0.20	0.040	0.044	0.050
140.00	0.22	0.045	0.050	0.057
150.00	0.23	0.052	0.057	0.065
160.00	0.25	0.058	0.065	0.074
170.00	0.26	0.065	0.072	0.083
180.00	0.28	0.072	0.081	0.093
190.00	0.29	0.080	0.089	0.104
200.00	0.31	0.087	0.099	0.114
210.00	0.32	0.096	0.108	0.126
220.00	0.34	0.104	0.118	0.138
230.00	0.36	0.113	0.129	0.150
240.00	0.37	0.123	0.140	0.163
250.00	0.39	0.132	0.151	0.177
260.00	0.40	0.142	0.163	0.191
270.00	0.42	0.152	0.175	0.206
280.00	0.43	0.163	0.188	0.221
290.00	0.45	0.174	0.201	0.236
300.00	0.46	0.185	0.214	0.253
310.00	0.48	0.197	0.228	0.270
320.00	0.49	0.209	0.243	0.287
330.00	0.51	0.222	0.258	0.305
340.00	0.53	0.234	0.273	0.323
350.00	0.54	0.247	0.289	0.342
375.00	0.58	0.281	0.330	0.392
400.00	0.62	0.318	0.374	0.445
425.00	0.66	0.356	0.421	0.501
450.00	0.70	0.396	0.470	0.561
475.00	0.73	0.439	0.522	0.624
500.00	0.77	0.484	0.577	0.691
525.00	0.81	0.530	0.634	0.761
550.00	0.85	0.579	0.695	0.834
575.00	0.89	0.630	0.758	0.911
600.00	0.93	0.683	0.824	0.991
625.00	0.97	0.738	0.892	1.074
650.00	1.00	0.795	0.963	1.161
675.00	1.04	0.854	1.037	1.251
700.00	1.08	0.915	1.114	1.345
725.00	1.12	0.979	1.193	1.442
750.00	1.16	1.044	1.275	1.542
775.00	1.20	1.111	1.360	1.646
800.00	1.24	1.181	1.447	1.753
825.00	1.27	1.252	1.538	1.863
850.00	1.31	1.326	1.630	1.977
875.00	1.35	1.402	1.726	2.094
900.00	1.39	1.479	1.825	2.214
925.00	1.43	1.559	1.926	2.338
950.00	1.47	1.641	2.029	2.465
975.00	1.51	1.725	2.136	2.596
1,000.00	1.55	1.811	2.245	2.730
1,050.00	1.62	1.989	2.472	3.008
1,100.00	1.70	2.175	2.709	3.299
1,150.00	1.78	2.370	2.958	3.604
1,200.00	1.85	2.572	3.217	3.922
1,250.00	1.93	2.783	3.487	4.254
1,300.00	2.01	3.003	3.768	4.600
1,350.00	2.09	3.230	4.060	4.958
1,400.00	2.16	3.466	4.363	5.331
1,450.00	2.24	3.709	4.677	5.716
1,500.00	2.32	3.961	5.001	6.115
1,550.00	2.39	4.221	5.337	6.528
1,600.00	2.47	4.490	5.683	6.954
1,650.00	2.55	4.766	6.040	7.394
1,700.00	2.63	5.051	6.409	7.847
1,750.00	2.70	5.344	6.787	8.313
1,800.00	2.78	5.645	7.177	8.793
1,850.00	2.86	5.954	7.578	9.287
1,900.00	2.94	6.272	7.990	9.794
1,950.00	3.01	6.598	8.412	10.310
2,000.00	3.09	6.931	8.845	10.850
2,050.00	3.17	7.274	9.290	11.400

Pressure loss table for DN 1000

Q [1/s]	DN 1000			
	v [m/s]	$\begin{gathered} \mathrm{k}_{1}=0.1 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} k_{1}=0.4 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$	$\begin{gathered} \mathrm{k}_{1}=1.0 \\ \mathrm{~J}[\mathrm{~m} / \mathrm{km}] \end{gathered}$
60.00	0.08	0.006	0.006	0.007
70.00	0.09	0.008	0.008	0.009
80.00	0.10	0.010	0.010	0.012
90.00	0.11	0.012	0.013	0.014
100.00	0.13	0.015	0.016	0.018
110.00	0.14	0.018	0.019	0.021
120.00	0.15	0.021	0.022	0.025
130.00	0.16	0.024	0.026	0.029
140.00	0.18	0.027	0.030	0.033
150.00	0.19	0.031	0.034	0.038
160.00	0.20	0.035	0.038	0.043
170.00	0.21	0.039	0.043	0.049
180.00	0.23	0.043	0.047	0.054
190.00	0.24	0.047	0.053	0.060
200.00	0.25	0.052	0.058	0.067
210.00	0.26	0.057	0.064	0.073
220.00	0.28	0.062	0.069	0.080
230.00	0.29	0.067	0.076	0.087
240.00	0.30	0.073	0.082	0.095
250.00	0.31	0.079	0.089	0.103
260.00	0.33	0.085	0.095	0.111
270.00	0.34	0.091	0.103	0.119
280.00	0.35	0.097	0.110	0.128
290.00	0.36	0.104	0.118	0.137
300.00	0.38	0.110	0.126	0.146
325.00	0.41	0.128	0.146	0.171
350.00	0.44	0.147	0.169	0.198
375.00	0.47	0.167	0.193	0.227
400.00	0.50	0.188	0.218	0.257
425.00	0.53	0.211	0.245	0.290
450.00	0.56	0.235	0.274	0.324
475.00	0.59	0.260	0.304	0.361
500.00	0.63	0.286	0.336	0.399
525.00	0.66	0.314	0.370	0.440
550.00	0.69	0.342	0.405	0.482
575.00	0.72	0.372	0.441	0.526
600.00	0.75	0.403	0.479	0.572
625.00	0.78	0.436	0.519	0.620
650.00	0.81	0.469	0.560	0.670
675.00	0.84	0.504	0.603	0.722
700.00	0.88	0.540	0.647	0.776
725.00	0.91	0.577	0.693	0.832
750.00	0.94	0.615	0.741	0.889
775.00	0.97	0.655	0.790	0.949
800.00	1.00	0.696	0.840	1.011
825.00	1.03	0.738	0.893	1.074
850.00	1.06	0.781	0.946	1.140
875.00	1.09	0.825	1.002	1.207
900.00	1.13	0.870	1.059	1.276
925.00	1.16	0.917	1.117	1.348
950.00	1.19	0.965	1.177	1.421
1,000.00	1.25	1.064	1.302	1.573
1,050.00	1.31	1.169	1.433	1.733
1,100.00	1.38	1.278	1.570	1.901
1,150.00	1.44	1.391	1.714	2.076
1,200.00	1.50	1.510	1.864	2.259
1,250.00	1.56	1.633	2.020	2.450
1,300.00	1.63	1.761	2.182	2.649
1,350.00	1.69	1.893	2.351	2.855
1,400.00	1.75	2.031	2.526	3.069
1,450.00	1.81	2.173	2.707	3.291
1,500.00	1.88	2.320	2.894	3.520
1,550.00	1.94	2.472	3.088	3.758
1,600.00	2.00	2.628	3.288	4.003
1,650.00	2.06	2.789	3.494	4.255
1,700.00	2.13	2.955	3.707	4.516
1,750.00	2.19	3.126	3.926	4.784
1,800.00	2.25	3.301	4.151	5.060
1,850.00	2.31	3.481	4.382	5.344
1,900.00	2.38	3.666	4.619	5.635
1,950.00	2.44	3.855	4.863	5.935
2,000.00	2.50	4.050	5.113	6.242
2,050.00	2.56	4.249	5.370	6.556
2,100.00	2.63	4.453	5.632	6.879
2,150.00	2.69	4.661	5.901	7.209
2,200.00	2.75	4.874	6.176	7.547
2,250.00	2.81	5.092	6.458	7.892
2,300.00	2.88	5.315	6.745	8.246

Contact

TIROLER ROHRE GmbH

Innsbrucker Strasse 51
6060 Hall in Tirol
Austria

T +43 52235030
F +43 5223111
E office@trm.at
www.trm.at

[^0]: ${ }^{12}$) Tolerances are possible, ${ }^{2)}$ PFA: allowable operating pressure; PMA $=1.2 \times$ PFA; PEA $=1.2 \times$ PFA +5 - higher PFA's on enquiry, ${ }^{3}$) Plus high-pressure lock if required with DN 80 to DN 250 sizes; ${ }^{4}$) Higher tractive forces on enquiry, ${ }^{5}$) Min. radius of curves (5 m pipe/ 6 m pipe), which results from the angular deflection possible at the sockets - applies to both open trench and trenchless laying, ${ }^{6}$) Approx. assembly time of the joint not including any protection it may be given

[^1]: ${ }^{1)}$ Tolerances are possible. ${ }^{2)}$ PFA: allowable operating pressure; PMA $=1.2 \times$ PFA; PEA $=1.2 \times$ PFA +5 - higher PFA's on enquiry. ${ }^{3)}$ Higher tractive forces on enquiry
 ${ }^{4}$ Min. radius of curves, which results from the angular deflection possible at the sockets - applies to both open trench and trenchless laying.

[^2]: Take note of the PFA of the VRS ${ }^{\circledR}$-T joint

[^3]: $L_{u}=$ laying length in the locked state
 $z=$ mean laying length (when used without a welded bead)
 Take note of the PFA of the VRS ${ }^{\text {- }}$-T joint

[^4]: Take note of the PFA of the VRS®-T joint

[^5]: ${ }^{\text {1) }}$ C40 under EN545:2006;) K9 under EN 545:2006; ${ }^{\text {3) }}$ K10 under EN 545:2006
 s_{1}) Minimum wall thickness in mm ; s_{2}) Nominal thickness of cement mortar lining in mm
 Weight = theoretical figures in kg inc. cement mortar lining, zinc coating and polyurethane (PUR)

[^6]: ${ }^{1)}$ Not including screw ring and bolted gland ring of the respective joints

[^7]: 1) To manufacturer's standard
[^8]: Crosses for higher pressures available on enquiry

[^9]: ${ }^{1)}$ Sleeves are supplied already cut to the specified length and fitted with a sealing strip
 Tape material in the form of 30 m rolls is available on enquiry for DN 250 to DN 1000 sizes

[^10]: The joint is now restrained.

